Marija S. Najdanovic, M. Zlatanovic, I. Hinterleitner
{"title":"广义等距空间的保角映射和测地线映射","authors":"Marija S. Najdanovic, M. Zlatanovic, I. Hinterleitner","doi":"10.2298/PIM1512071N","DOIUrl":null,"url":null,"abstract":"We consider conformal and geodesic mappings of generalized equidistant \n spaces. We prove the existence of mentioned nontrivial mappings and construct \n examples of conformal and geodesic mapping of a 3-dimensional generalized \n equidistant space. Also, we find some invariant objects (three tensors and \n four which are not tensors) of special geodesic mapping of generalized \n equidistant space. [Projekat Ministarstva nauke Republike Srbije, br. 174012]","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Conformal and geodesic mappings of generalized equidistant spaces\",\"authors\":\"Marija S. Najdanovic, M. Zlatanovic, I. Hinterleitner\",\"doi\":\"10.2298/PIM1512071N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider conformal and geodesic mappings of generalized equidistant \\n spaces. We prove the existence of mentioned nontrivial mappings and construct \\n examples of conformal and geodesic mapping of a 3-dimensional generalized \\n equidistant space. Also, we find some invariant objects (three tensors and \\n four which are not tensors) of special geodesic mapping of generalized \\n equidistant space. [Projekat Ministarstva nauke Republike Srbije, br. 174012]\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1512071N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1512071N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conformal and geodesic mappings of generalized equidistant spaces
We consider conformal and geodesic mappings of generalized equidistant
spaces. We prove the existence of mentioned nontrivial mappings and construct
examples of conformal and geodesic mapping of a 3-dimensional generalized
equidistant space. Also, we find some invariant objects (three tensors and
four which are not tensors) of special geodesic mapping of generalized
equidistant space. [Projekat Ministarstva nauke Republike Srbije, br. 174012]