高度可解释的语言知识库优化:遗传调谐与Solis-Wetts。寻找一个好的可解释性和准确性的权衡

J. M. Alonso, O. Cordón, S. Guillaume, L. Magdalena
{"title":"高度可解释的语言知识库优化:遗传调谐与Solis-Wetts。寻找一个好的可解释性和准确性的权衡","authors":"J. M. Alonso, O. Cordón, S. Guillaume, L. Magdalena","doi":"10.1109/FUZZY.2007.4295485","DOIUrl":null,"url":null,"abstract":"This work shows how to achieve a good interpretability-accuracy trade-off through keeping the strong fuzzy partition property along the whole fuzzy modeling process. First, a small compact knowledge base is built. It is highly interpretable and reasonably accurate. Second, an optimization procedure, which only affects the fuzzy partitions defining the system variables, is carried out. It improves the system accuracy while preserving the system interpretability. Two optimization strategies are compared: Solis-Wetts, a local search based strategy; and Genetic Tuning, a global search based strategy. Results obtained in a well-known benchmark medical classification problem, related to breast cancer diagnosis, show that our methodology is able to achieve knowledge bases with high interpretability and accuracy comparable to that obtained by other methodologies.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Highly Interpretable Linguistic Knowledge Bases Optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off\",\"authors\":\"J. M. Alonso, O. Cordón, S. Guillaume, L. Magdalena\",\"doi\":\"10.1109/FUZZY.2007.4295485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work shows how to achieve a good interpretability-accuracy trade-off through keeping the strong fuzzy partition property along the whole fuzzy modeling process. First, a small compact knowledge base is built. It is highly interpretable and reasonably accurate. Second, an optimization procedure, which only affects the fuzzy partitions defining the system variables, is carried out. It improves the system accuracy while preserving the system interpretability. Two optimization strategies are compared: Solis-Wetts, a local search based strategy; and Genetic Tuning, a global search based strategy. Results obtained in a well-known benchmark medical classification problem, related to breast cancer diagnosis, show that our methodology is able to achieve knowledge bases with high interpretability and accuracy comparable to that obtained by other methodologies.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文展示了如何在整个模糊建模过程中保持强模糊划分特性,从而达到良好的可解释性和准确性之间的权衡。首先,构建一个小型的紧凑知识库。它具有高度的可解释性和相当的准确性。其次,进行了只影响定义系统变量的模糊分区的优化过程。它在保持系统可解释性的同时提高了系统的准确性。比较了两种优化策略:基于局部搜索的Solis-Wetts策略;以及基于全局搜索策略的遗传调谐。在一个与乳腺癌诊断相关的著名基准医学分类问题中获得的结果表明,我们的方法能够获得与其他方法相当的具有高可解释性和准确性的知识库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Interpretable Linguistic Knowledge Bases Optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off
This work shows how to achieve a good interpretability-accuracy trade-off through keeping the strong fuzzy partition property along the whole fuzzy modeling process. First, a small compact knowledge base is built. It is highly interpretable and reasonably accurate. Second, an optimization procedure, which only affects the fuzzy partitions defining the system variables, is carried out. It improves the system accuracy while preserving the system interpretability. Two optimization strategies are compared: Solis-Wetts, a local search based strategy; and Genetic Tuning, a global search based strategy. Results obtained in a well-known benchmark medical classification problem, related to breast cancer diagnosis, show that our methodology is able to achieve knowledge bases with high interpretability and accuracy comparable to that obtained by other methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信