{"title":"行动本地化的上下文建议网络","authors":"He-Yen Hsieh, Ding-Jie Chen, Tyng-Luh Liu","doi":"10.1109/WACV51458.2022.00084","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of Temporal Action Proposal (TAP) generation, which aims to provide a set of high-quality video segments that potentially contain actions events locating in long untrimmed videos. Based on the goal to distill available contextual information, we introduce a Contextual Proposal Network (CPN) composing of two context-aware mechanisms. The first mechanism, i.e., feature enhancing, integrates the inception-like module with long-range attention to capture the multi-scale temporal contexts for yielding a robust video segment representation. The second mechanism, i.e., boundary scoring, employs the bi-directional recurrent neural networks (RNN) to capture bi-directional temporal contexts that explicitly model actionness, background, and confidence of proposals. While generating and scoring proposals, such bi-directional temporal contexts are helpful to retrieve high-quality proposals of low false positives for covering the video action instances. We conduct experiments on two challenging datasets of ActivityNet-1.3 and THUMOS-14 to demonstrate the effectiveness of the proposed Contextual Proposal Network (CPN). In particular, our method respectively surpasses state-of-the-art TAP methods by 1.54% AUC on ActivityNet-1.3 test split and by 0.61% AR@200 on THUMOS-14 dataset.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Contextual Proposal Network for Action Localization\",\"authors\":\"He-Yen Hsieh, Ding-Jie Chen, Tyng-Luh Liu\",\"doi\":\"10.1109/WACV51458.2022.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of Temporal Action Proposal (TAP) generation, which aims to provide a set of high-quality video segments that potentially contain actions events locating in long untrimmed videos. Based on the goal to distill available contextual information, we introduce a Contextual Proposal Network (CPN) composing of two context-aware mechanisms. The first mechanism, i.e., feature enhancing, integrates the inception-like module with long-range attention to capture the multi-scale temporal contexts for yielding a robust video segment representation. The second mechanism, i.e., boundary scoring, employs the bi-directional recurrent neural networks (RNN) to capture bi-directional temporal contexts that explicitly model actionness, background, and confidence of proposals. While generating and scoring proposals, such bi-directional temporal contexts are helpful to retrieve high-quality proposals of low false positives for covering the video action instances. We conduct experiments on two challenging datasets of ActivityNet-1.3 and THUMOS-14 to demonstrate the effectiveness of the proposed Contextual Proposal Network (CPN). In particular, our method respectively surpasses state-of-the-art TAP methods by 1.54% AUC on ActivityNet-1.3 test split and by 0.61% AR@200 on THUMOS-14 dataset.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contextual Proposal Network for Action Localization
This paper investigates the problem of Temporal Action Proposal (TAP) generation, which aims to provide a set of high-quality video segments that potentially contain actions events locating in long untrimmed videos. Based on the goal to distill available contextual information, we introduce a Contextual Proposal Network (CPN) composing of two context-aware mechanisms. The first mechanism, i.e., feature enhancing, integrates the inception-like module with long-range attention to capture the multi-scale temporal contexts for yielding a robust video segment representation. The second mechanism, i.e., boundary scoring, employs the bi-directional recurrent neural networks (RNN) to capture bi-directional temporal contexts that explicitly model actionness, background, and confidence of proposals. While generating and scoring proposals, such bi-directional temporal contexts are helpful to retrieve high-quality proposals of low false positives for covering the video action instances. We conduct experiments on two challenging datasets of ActivityNet-1.3 and THUMOS-14 to demonstrate the effectiveness of the proposed Contextual Proposal Network (CPN). In particular, our method respectively surpasses state-of-the-art TAP methods by 1.54% AUC on ActivityNet-1.3 test split and by 0.61% AR@200 on THUMOS-14 dataset.