{"title":"低秩张量回归:可扩展性和应用","authors":"Yan Liu","doi":"10.1109/CAMSAP.2017.8313222","DOIUrl":null,"url":null,"abstract":"With the development of sensor and satellite technologies, massive amount of multiway data emerges in many applications. Low-rank tensor regression, as a powerful technique for analyzing tensor data, attracted significant interest from the machine learning community. In this paper, we discuss a series of fast algorithms for solving low-rank tensor regression in different learning scenarios, including (a) a greedy algorithm for batch learning; (b) Accelerated Low-rank Tensor Online Learning (ALTO) algorithm for online learning; (c) subsampled tensor projected gradient for memory efficient learning.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Rank tensor regression: Scalability and applications\",\"authors\":\"Yan Liu\",\"doi\":\"10.1109/CAMSAP.2017.8313222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of sensor and satellite technologies, massive amount of multiway data emerges in many applications. Low-rank tensor regression, as a powerful technique for analyzing tensor data, attracted significant interest from the machine learning community. In this paper, we discuss a series of fast algorithms for solving low-rank tensor regression in different learning scenarios, including (a) a greedy algorithm for batch learning; (b) Accelerated Low-rank Tensor Online Learning (ALTO) algorithm for online learning; (c) subsampled tensor projected gradient for memory efficient learning.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Rank tensor regression: Scalability and applications
With the development of sensor and satellite technologies, massive amount of multiway data emerges in many applications. Low-rank tensor regression, as a powerful technique for analyzing tensor data, attracted significant interest from the machine learning community. In this paper, we discuss a series of fast algorithms for solving low-rank tensor regression in different learning scenarios, including (a) a greedy algorithm for batch learning; (b) Accelerated Low-rank Tensor Online Learning (ALTO) algorithm for online learning; (c) subsampled tensor projected gradient for memory efficient learning.