低秩张量回归:可扩展性和应用

Yan Liu
{"title":"低秩张量回归:可扩展性和应用","authors":"Yan Liu","doi":"10.1109/CAMSAP.2017.8313222","DOIUrl":null,"url":null,"abstract":"With the development of sensor and satellite technologies, massive amount of multiway data emerges in many applications. Low-rank tensor regression, as a powerful technique for analyzing tensor data, attracted significant interest from the machine learning community. In this paper, we discuss a series of fast algorithms for solving low-rank tensor regression in different learning scenarios, including (a) a greedy algorithm for batch learning; (b) Accelerated Low-rank Tensor Online Learning (ALTO) algorithm for online learning; (c) subsampled tensor projected gradient for memory efficient learning.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Rank tensor regression: Scalability and applications\",\"authors\":\"Yan Liu\",\"doi\":\"10.1109/CAMSAP.2017.8313222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of sensor and satellite technologies, massive amount of multiway data emerges in many applications. Low-rank tensor regression, as a powerful technique for analyzing tensor data, attracted significant interest from the machine learning community. In this paper, we discuss a series of fast algorithms for solving low-rank tensor regression in different learning scenarios, including (a) a greedy algorithm for batch learning; (b) Accelerated Low-rank Tensor Online Learning (ALTO) algorithm for online learning; (c) subsampled tensor projected gradient for memory efficient learning.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着传感器和卫星技术的发展,大量的多路数据出现在许多应用中。低秩张量回归作为一种分析张量数据的强大技术,引起了机器学习社区的极大兴趣。在本文中,我们讨论了在不同的学习场景下求解低秩张量回归的一系列快速算法,包括(a)用于批量学习的贪婪算法;(b)用于在线学习的加速低秩张量在线学习(ALTO)算法;(c)下采样张量投影梯度用于记忆高效学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Rank tensor regression: Scalability and applications
With the development of sensor and satellite technologies, massive amount of multiway data emerges in many applications. Low-rank tensor regression, as a powerful technique for analyzing tensor data, attracted significant interest from the machine learning community. In this paper, we discuss a series of fast algorithms for solving low-rank tensor regression in different learning scenarios, including (a) a greedy algorithm for batch learning; (b) Accelerated Low-rank Tensor Online Learning (ALTO) algorithm for online learning; (c) subsampled tensor projected gradient for memory efficient learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信