水下机器人操作使用分散自适应神经控制器

R. Pap, C. Parten, M. Rich, M. Lothers, C. Thomas
{"title":"水下机器人操作使用分散自适应神经控制器","authors":"R. Pap, C. Parten, M. Rich, M. Lothers, C. Thomas","doi":"10.1109/ICNN.1991.163350","DOIUrl":null,"url":null,"abstract":"The authors explored whether neural networks can improve telerobotic performance. The neural network design is based upon an innovative three-tier distributed control architecture. The neurocontroller was tested on two simulated two-joint robot arms which had different dynamics. The tests compared the performance of five controller configurations. The findings indicate that a decentralized adaptive neurocontroller performed as well as or better than standard adaptive and nonadaptive controllers. This approach to autonomous control and path planning circumvents the tradeoff between speed and desired levels of accuracy, stability, and robustness by generating optimal trajectories without sacrificing computational speed or robustness.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"432 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Underwater robotic operations using a decentralized adaptive neurocontroller\",\"authors\":\"R. Pap, C. Parten, M. Rich, M. Lothers, C. Thomas\",\"doi\":\"10.1109/ICNN.1991.163350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors explored whether neural networks can improve telerobotic performance. The neural network design is based upon an innovative three-tier distributed control architecture. The neurocontroller was tested on two simulated two-joint robot arms which had different dynamics. The tests compared the performance of five controller configurations. The findings indicate that a decentralized adaptive neurocontroller performed as well as or better than standard adaptive and nonadaptive controllers. This approach to autonomous control and path planning circumvents the tradeoff between speed and desired levels of accuracy, stability, and robustness by generating optimal trajectories without sacrificing computational speed or robustness.<<ETX>>\",\"PeriodicalId\":296300,\"journal\":{\"name\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"volume\":\"432 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1991.163350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作者探讨了神经网络是否可以提高远程机器人的性能。神经网络设计基于创新的三层分布式控制架构。在两个具有不同动力学特性的模拟双关节机械臂上对神经控制器进行了测试。测试比较了五种控制器配置的性能。研究结果表明,分散自适应神经控制器的表现与标准自适应和非自适应控制器一样好,甚至更好。这种自主控制和路径规划方法通过在不牺牲计算速度或鲁棒性的情况下生成最佳轨迹,避免了速度与所需精度、稳定性和鲁棒性水平之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater robotic operations using a decentralized adaptive neurocontroller
The authors explored whether neural networks can improve telerobotic performance. The neural network design is based upon an innovative three-tier distributed control architecture. The neurocontroller was tested on two simulated two-joint robot arms which had different dynamics. The tests compared the performance of five controller configurations. The findings indicate that a decentralized adaptive neurocontroller performed as well as or better than standard adaptive and nonadaptive controllers. This approach to autonomous control and path planning circumvents the tradeoff between speed and desired levels of accuracy, stability, and robustness by generating optimal trajectories without sacrificing computational speed or robustness.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信