P. Luszczek, Y. Tsai, Neil Lindquist, H. Anzt, J. Dongarra
{"title":"用于评估混合精度求解器的可扩展数据生成","authors":"P. Luszczek, Y. Tsai, Neil Lindquist, H. Anzt, J. Dongarra","doi":"10.1109/HPEC43674.2020.9286145","DOIUrl":null,"url":null,"abstract":"We present techniques of generating data for mixed precision solvers that allows to test those solvers in a scalable manner. Our techniques focus on mixed precision hardware and software where both the solver and the hardware can take advantage of mixing multiple floating precision formats. This allows taking advantage of recently released generation of hardware platforms that focus on ML and DNN workloads but can also be utilized for HPC applications if a new breed of algorithms is combined with the custom floating-point formats to deliver performance levels beyond the standard IEEE data types while delivering a comparable accuracy of the results.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Data Generation for Evaluating Mixed-Precision Solvers\",\"authors\":\"P. Luszczek, Y. Tsai, Neil Lindquist, H. Anzt, J. Dongarra\",\"doi\":\"10.1109/HPEC43674.2020.9286145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present techniques of generating data for mixed precision solvers that allows to test those solvers in a scalable manner. Our techniques focus on mixed precision hardware and software where both the solver and the hardware can take advantage of mixing multiple floating precision formats. This allows taking advantage of recently released generation of hardware platforms that focus on ML and DNN workloads but can also be utilized for HPC applications if a new breed of algorithms is combined with the custom floating-point formats to deliver performance levels beyond the standard IEEE data types while delivering a comparable accuracy of the results.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Data Generation for Evaluating Mixed-Precision Solvers
We present techniques of generating data for mixed precision solvers that allows to test those solvers in a scalable manner. Our techniques focus on mixed precision hardware and software where both the solver and the hardware can take advantage of mixing multiple floating precision formats. This allows taking advantage of recently released generation of hardware platforms that focus on ML and DNN workloads but can also be utilized for HPC applications if a new breed of algorithms is combined with the custom floating-point formats to deliver performance levels beyond the standard IEEE data types while delivering a comparable accuracy of the results.