基于贝叶斯局部带宽的灵活半参数核估计与多变量计数数据诊断

Sobom M. Somé, C. C. Kokonendji
{"title":"基于贝叶斯局部带宽的灵活半参数核估计与多变量计数数据诊断","authors":"Sobom M. Somé, C. C. Kokonendji","doi":"10.11159/icsta22.126","DOIUrl":null,"url":null,"abstract":"While parametric models have fulfilled a prominent role in terms of modelling multivariate data, nonparametric kernel smoothings [1] are recently envisaged for count data. Multivariate count data appear in a wide range of fields like environments (e.g., different kinds of plantation), marketing (e.g., purchases of different products) or epidemiology (e.g., different types of a disease). In this paper, we elaborate two flexible semiparametric approaches governed by the multivariate Poisson with nonnegative cross correlations (from the common covariance µ 0 such that µ 0 =0 or µ 0 >0) for estimating multivariate probability mass functions. In the jungle of multivariate count distributions, we used the so-called generalized dispersion index [2] to compare several distributions between them. Our semiparametric method is then developed through expectation-maximisation scheme [3] and maximum likelihood method to estimate the parameters of the correlated and uncorrelated parametric Poisson departures. Also, the multiple binomial kernel with local Bayesian bandwidths [4] is used for the nonparametric part. Practical diagnostic criteria like the empirical integrated squared errors ISE 0 and the logarithm of the weight functions [5] are here opted to select the correct approach according to the data analysis. For the latter","PeriodicalId":325859,"journal":{"name":"Proceedings of the 4th International Conference on Statistics: Theory and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Semiparametric Kernel Estimation with Bayesian Local Bandwidths and Diagnostics for Multivariate Count Data\",\"authors\":\"Sobom M. Somé, C. C. Kokonendji\",\"doi\":\"10.11159/icsta22.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While parametric models have fulfilled a prominent role in terms of modelling multivariate data, nonparametric kernel smoothings [1] are recently envisaged for count data. Multivariate count data appear in a wide range of fields like environments (e.g., different kinds of plantation), marketing (e.g., purchases of different products) or epidemiology (e.g., different types of a disease). In this paper, we elaborate two flexible semiparametric approaches governed by the multivariate Poisson with nonnegative cross correlations (from the common covariance µ 0 such that µ 0 =0 or µ 0 >0) for estimating multivariate probability mass functions. In the jungle of multivariate count distributions, we used the so-called generalized dispersion index [2] to compare several distributions between them. Our semiparametric method is then developed through expectation-maximisation scheme [3] and maximum likelihood method to estimate the parameters of the correlated and uncorrelated parametric Poisson departures. Also, the multiple binomial kernel with local Bayesian bandwidths [4] is used for the nonparametric part. Practical diagnostic criteria like the empirical integrated squared errors ISE 0 and the logarithm of the weight functions [5] are here opted to select the correct approach according to the data analysis. For the latter\",\"PeriodicalId\":325859,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Statistics: Theory and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Statistics: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/icsta22.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta22.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然参数模型在建模多变量数据方面发挥了突出作用,但最近设想了计数数据的非参数核平滑[1]。多变量计数数据出现在各种领域,如环境(例如,不同种类的种植园)、市场营销(例如,购买不同产品)或流行病学(例如,不同类型的疾病)。在本文中,我们阐述了两种灵活的半参数方法,由非负互相关的多元泊松控制(从公共协方差µ0开始,使得µ0 =0或µ0 >0)来估计多元概率质量函数。在多元计数分布的丛林中,我们使用所谓的广义离散指数[2]来比较它们之间的几种分布。然后通过期望最大化方案[3]和最大似然方法开发了我们的半参数方法,以估计相关和不相关参数泊松偏离的参数。非参数部分采用具有局部贝叶斯带宽的多重二项式核[4]。这里选择了经验积分平方误差ISE 0和权函数的对数等实用的诊断标准[5],以便根据数据分析选择正确的方法。对于后者
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Semiparametric Kernel Estimation with Bayesian Local Bandwidths and Diagnostics for Multivariate Count Data
While parametric models have fulfilled a prominent role in terms of modelling multivariate data, nonparametric kernel smoothings [1] are recently envisaged for count data. Multivariate count data appear in a wide range of fields like environments (e.g., different kinds of plantation), marketing (e.g., purchases of different products) or epidemiology (e.g., different types of a disease). In this paper, we elaborate two flexible semiparametric approaches governed by the multivariate Poisson with nonnegative cross correlations (from the common covariance µ 0 such that µ 0 =0 or µ 0 >0) for estimating multivariate probability mass functions. In the jungle of multivariate count distributions, we used the so-called generalized dispersion index [2] to compare several distributions between them. Our semiparametric method is then developed through expectation-maximisation scheme [3] and maximum likelihood method to estimate the parameters of the correlated and uncorrelated parametric Poisson departures. Also, the multiple binomial kernel with local Bayesian bandwidths [4] is used for the nonparametric part. Practical diagnostic criteria like the empirical integrated squared errors ISE 0 and the logarithm of the weight functions [5] are here opted to select the correct approach according to the data analysis. For the latter
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信