{"title":"Gröbner在交换群下不变的理想基:非模情况","authors":"J. Faugère, Jules Svartz","doi":"10.1145/2465506.2465944","DOIUrl":null,"url":null,"abstract":"We propose efficient algorithms to compute the Gröbner basis of an ideal <i>I</i> subset <i>k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>] globally invariant under the action of a commutative matrix group <i>G</i>, in the non-modular case (where <i>char</i>(<i>k</i>) doesn't divide |<i>G</i>|). The idea is to simultaneously diagonalize the matrices in <i>G</i>, and apply a linear change of variables on <i>I</i> corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on <i>I</i> are diagonal. This action induces a grading on the ring <i>R=k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>], compatible with the degree, indexed by a group related to <i>G</i>, that we call <i>G</i>-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |<i>G</i>| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of <i>R/I</i> (the staircase) if <i>I</i> is a zero-dimensional ideal. Therefore, we derive <i>abelian</i> versions of the classical algorithms <i>F</i><sub>4</sub>, <i>F</i><sub>5</sub> or FGLM. Moreover, this new variant of <i>F</i><sub>4</sub>/ <i>F</i><sub>5</sub> allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of <i>F</i><sub>4</sub>. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Gröbner bases of ideals invariant under a commutative group: the non-modular case\",\"authors\":\"J. Faugère, Jules Svartz\",\"doi\":\"10.1145/2465506.2465944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose efficient algorithms to compute the Gröbner basis of an ideal <i>I</i> subset <i>k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>] globally invariant under the action of a commutative matrix group <i>G</i>, in the non-modular case (where <i>char</i>(<i>k</i>) doesn't divide |<i>G</i>|). The idea is to simultaneously diagonalize the matrices in <i>G</i>, and apply a linear change of variables on <i>I</i> corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on <i>I</i> are diagonal. This action induces a grading on the ring <i>R=k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>], compatible with the degree, indexed by a group related to <i>G</i>, that we call <i>G</i>-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |<i>G</i>| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of <i>R/I</i> (the staircase) if <i>I</i> is a zero-dimensional ideal. Therefore, we derive <i>abelian</i> versions of the classical algorithms <i>F</i><sub>4</sub>, <i>F</i><sub>5</sub> or FGLM. Moreover, this new variant of <i>F</i><sub>4</sub>/ <i>F</i><sub>5</sub> allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of <i>F</i><sub>4</sub>. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gröbner bases of ideals invariant under a commutative group: the non-modular case
We propose efficient algorithms to compute the Gröbner basis of an ideal I subset k[x1,...,xn] globally invariant under the action of a commutative matrix group G, in the non-modular case (where char(k) doesn't divide |G|). The idea is to simultaneously diagonalize the matrices in G, and apply a linear change of variables on I corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on I are diagonal. This action induces a grading on the ring R=k[x1,...,xn], compatible with the degree, indexed by a group related to G, that we call G-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |G| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of R/I (the staircase) if I is a zero-dimensional ideal. Therefore, we derive abelian versions of the classical algorithms F4, F5 or FGLM. Moreover, this new variant of F4/ F5 allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of F4. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.