Gröbner在交换群下不变的理想基:非模情况

J. Faugère, Jules Svartz
{"title":"Gröbner在交换群下不变的理想基:非模情况","authors":"J. Faugère, Jules Svartz","doi":"10.1145/2465506.2465944","DOIUrl":null,"url":null,"abstract":"We propose efficient algorithms to compute the Gröbner basis of an ideal <i>I</i> subset <i>k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>] globally invariant under the action of a commutative matrix group <i>G</i>, in the non-modular case (where <i>char</i>(<i>k</i>) doesn't divide |<i>G</i>|). The idea is to simultaneously diagonalize the matrices in <i>G</i>, and apply a linear change of variables on <i>I</i> corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on <i>I</i> are diagonal. This action induces a grading on the ring <i>R=k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>], compatible with the degree, indexed by a group related to <i>G</i>, that we call <i>G</i>-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |<i>G</i>| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of <i>R/I</i> (the staircase) if <i>I</i> is a zero-dimensional ideal. Therefore, we derive <i>abelian</i> versions of the classical algorithms <i>F</i><sub>4</sub>, <i>F</i><sub>5</sub> or FGLM. Moreover, this new variant of <i>F</i><sub>4</sub>/ <i>F</i><sub>5</sub> allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of <i>F</i><sub>4</sub>. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Gröbner bases of ideals invariant under a commutative group: the non-modular case\",\"authors\":\"J. Faugère, Jules Svartz\",\"doi\":\"10.1145/2465506.2465944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose efficient algorithms to compute the Gröbner basis of an ideal <i>I</i> subset <i>k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>] globally invariant under the action of a commutative matrix group <i>G</i>, in the non-modular case (where <i>char</i>(<i>k</i>) doesn't divide |<i>G</i>|). The idea is to simultaneously diagonalize the matrices in <i>G</i>, and apply a linear change of variables on <i>I</i> corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on <i>I</i> are diagonal. This action induces a grading on the ring <i>R=k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>], compatible with the degree, indexed by a group related to <i>G</i>, that we call <i>G</i>-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |<i>G</i>| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of <i>R/I</i> (the staircase) if <i>I</i> is a zero-dimensional ideal. Therefore, we derive <i>abelian</i> versions of the classical algorithms <i>F</i><sub>4</sub>, <i>F</i><sub>5</sub> or FGLM. Moreover, this new variant of <i>F</i><sub>4</sub>/ <i>F</i><sub>5</sub> allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of <i>F</i><sub>4</sub>. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们提出了有效的算法来计算理想I子集k[x1,…]的Gröbner基。,xn]在交换矩阵群G的作用下全局不变,在非模情况下(其中char(k)不除|G|)。其思想是同时对角化G中的矩阵,并在I上应用变量的线性变换对应于这个对角化的基变换矩阵。现在我们可以假设作用于I的矩阵是对角的。这个作用在环R=k[x1,…],xn],与度相容,由与G相关的组来索引,我们称之为G度。下一步是观察这种分级是在Gröbner基计算甚至改变排序期间保持的,这允许我们将Macaulay矩阵拆分为大小大致相同的|G|子矩阵。以同样的方式,如果I是零维理想,我们可以拆分R/I(楼梯)的规范基。因此,我们推导了经典算法F4, F5或FGLM的阿贝尔版本。此外,F4/ F5的这种新变体允许线性代数步骤的完全并行化,这已经成功实现。对于来自应用程序的实例(NTRU加密系统或cycle -n问题),可以获得超过400的加速。例如,使用F4的这种变体可以在不到8小时的时间内解决Cyclic-11问题的Gröbner基础。此外,利用这种方法,我们可以识别出可以在多项式时间内求解的多项式系统的新类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gröbner bases of ideals invariant under a commutative group: the non-modular case
We propose efficient algorithms to compute the Gröbner basis of an ideal I subset k[x1,...,xn] globally invariant under the action of a commutative matrix group G, in the non-modular case (where char(k) doesn't divide |G|). The idea is to simultaneously diagonalize the matrices in G, and apply a linear change of variables on I corresponding to the base-change matrix of this diagonalization. We can now suppose that the matrices acting on I are diagonal. This action induces a grading on the ring R=k[x1,...,xn], compatible with the degree, indexed by a group related to G, that we call G-degree. The next step is the observation that this grading is maintained during a Gröbner basis computation or even a change of ordering, which allows us to split the Macaulay matrices into |G| submatrices of roughly the same size. In the same way, we are able to split the canonical basis of R/I (the staircase) if I is a zero-dimensional ideal. Therefore, we derive abelian versions of the classical algorithms F4, F5 or FGLM. Moreover, this new variant of F4/ F5 allows complete parallelization of the linear algebra steps, which has been successfully implemented. On instances coming from applications (NTRU crypto-system or the Cyclic-n problem), a speed-up of more than 400 can be obtained. For example, a Gröbner basis of the Cyclic-11 problem can be solved in less than 8 hours with this variant of F4. Moreover, using this method, we can identify new classes of polynomial systems that can be solved in polynomial time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信