{"title":"多体波能转换器的极端载荷计算流体动力学分析与验证","authors":"J. V. Rij, Yi-Hsiang Yu, A. Mccall, R. Coe","doi":"10.1115/omae2019-96397","DOIUrl":null,"url":null,"abstract":"\n A wave energy converter (WEC) must be designed to survive the extreme sea states that it will be subject to throughout its lifetime. Although there are many analysis methods and codes available to accomplish this, there are currently several engineering challenges to WEC survival design. Foremost, the computational design approach will typically involve a trade-off between accuracy and computational efficiency. Additionally, most computational fluid dynamics (CFD) codes are not ideally suited to modeling extreme events for WECs with multibody dynamics, power-take-off systems, and mooring systems. Finally, although WEC design standards and CFD guidelines are emerging, with the current immaturity of the WEC industry, they are not yet well established. In this study, loads on a 1:35-scale, moored, multibody WEC are evaluated with CFD. The CFD results are compared with results obtained from a computationally efficient, midfidelity model based on linearized potential flow hydrodynamics. For these model verification comparisons, both operational and survival configurations are considered. The extreme load results obtained, using both codes, indicate that the survival configuration successfully sheds loads during extreme sea states. It is also found that WEC-Sim, when appropriately applied, can provide reasonable load results, at a fraction of the computational expense of CFD. However, for the more extreme sea states, and for higher-order effects not included in the WEC-Sim model, the linear-based results have significant errors in comparison to the CFD-based results, and should be used judiciously.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Extreme Load Computational Fluid Dynamics Analysis and Verification for a Multibody Wave Energy Converter\",\"authors\":\"J. V. Rij, Yi-Hsiang Yu, A. Mccall, R. Coe\",\"doi\":\"10.1115/omae2019-96397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A wave energy converter (WEC) must be designed to survive the extreme sea states that it will be subject to throughout its lifetime. Although there are many analysis methods and codes available to accomplish this, there are currently several engineering challenges to WEC survival design. Foremost, the computational design approach will typically involve a trade-off between accuracy and computational efficiency. Additionally, most computational fluid dynamics (CFD) codes are not ideally suited to modeling extreme events for WECs with multibody dynamics, power-take-off systems, and mooring systems. Finally, although WEC design standards and CFD guidelines are emerging, with the current immaturity of the WEC industry, they are not yet well established. In this study, loads on a 1:35-scale, moored, multibody WEC are evaluated with CFD. The CFD results are compared with results obtained from a computationally efficient, midfidelity model based on linearized potential flow hydrodynamics. For these model verification comparisons, both operational and survival configurations are considered. The extreme load results obtained, using both codes, indicate that the survival configuration successfully sheds loads during extreme sea states. It is also found that WEC-Sim, when appropriately applied, can provide reasonable load results, at a fraction of the computational expense of CFD. However, for the more extreme sea states, and for higher-order effects not included in the WEC-Sim model, the linear-based results have significant errors in comparison to the CFD-based results, and should be used judiciously.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme Load Computational Fluid Dynamics Analysis and Verification for a Multibody Wave Energy Converter
A wave energy converter (WEC) must be designed to survive the extreme sea states that it will be subject to throughout its lifetime. Although there are many analysis methods and codes available to accomplish this, there are currently several engineering challenges to WEC survival design. Foremost, the computational design approach will typically involve a trade-off between accuracy and computational efficiency. Additionally, most computational fluid dynamics (CFD) codes are not ideally suited to modeling extreme events for WECs with multibody dynamics, power-take-off systems, and mooring systems. Finally, although WEC design standards and CFD guidelines are emerging, with the current immaturity of the WEC industry, they are not yet well established. In this study, loads on a 1:35-scale, moored, multibody WEC are evaluated with CFD. The CFD results are compared with results obtained from a computationally efficient, midfidelity model based on linearized potential flow hydrodynamics. For these model verification comparisons, both operational and survival configurations are considered. The extreme load results obtained, using both codes, indicate that the survival configuration successfully sheds loads during extreme sea states. It is also found that WEC-Sim, when appropriately applied, can provide reasonable load results, at a fraction of the computational expense of CFD. However, for the more extreme sea states, and for higher-order effects not included in the WEC-Sim model, the linear-based results have significant errors in comparison to the CFD-based results, and should be used judiciously.