基于模糊双聚类框架的低疲劳损伤识别

Z. Nopiah, M. H. Osman, S. Abdullah, M. N. Baharin
{"title":"基于模糊双聚类框架的低疲劳损伤识别","authors":"Z. Nopiah, M. H. Osman, S. Abdullah, M. N. Baharin","doi":"10.1109/CSPA.2011.5759869","DOIUrl":null,"url":null,"abstract":"Identifying damaging or non-damaging events in long records of fatigue data is a crux of recapitulating pristine data. In this article, a fuzzy double clustering framework (DCf) is utilized to classify the fatigue segment by exploiting two typical statistical features; kurtosis and the standard deviation. In the first stage, segments are assigned to a number of similar groups to generate multi-dimensional prototypes. Then, the resulting multi-dimensional prototypes are projected onto each featuring space of the input variables. On each dimension, a hierarchical clustering is applied to extract the information granules. For ease of interpretability, the granules are translated into a set of antecedent-consequent rules by means of a fuzzy set theory where for the model output, two distinct classes namely low and high with different degrees of evidence are assigned. The results reveal that the fatigue segments could be classified according to the value of kurtosis and standard deviation in a specific range where further, it can be a part of a fatigue data editing process","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The identification of low fatigue damage using fuzzy double clustering framework\",\"authors\":\"Z. Nopiah, M. H. Osman, S. Abdullah, M. N. Baharin\",\"doi\":\"10.1109/CSPA.2011.5759869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying damaging or non-damaging events in long records of fatigue data is a crux of recapitulating pristine data. In this article, a fuzzy double clustering framework (DCf) is utilized to classify the fatigue segment by exploiting two typical statistical features; kurtosis and the standard deviation. In the first stage, segments are assigned to a number of similar groups to generate multi-dimensional prototypes. Then, the resulting multi-dimensional prototypes are projected onto each featuring space of the input variables. On each dimension, a hierarchical clustering is applied to extract the information granules. For ease of interpretability, the granules are translated into a set of antecedent-consequent rules by means of a fuzzy set theory where for the model output, two distinct classes namely low and high with different degrees of evidence are assigned. The results reveal that the fatigue segments could be classified according to the value of kurtosis and standard deviation in a specific range where further, it can be a part of a fatigue data editing process\",\"PeriodicalId\":282179,\"journal\":{\"name\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2011.5759869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

识别疲劳数据长记录中的损伤或非损伤事件是重现原始数据的关键。本文采用模糊双聚类框架(DCf),利用两个典型的统计特征对疲劳段进行分类;峰度和标准差。在第一阶段,将片段分配给许多相似的组,以生成多维原型。然后,将得到的多维原型投影到输入变量的每个特征空间上。在每个维度上,采用分层聚类方法提取信息颗粒。为了便于解释,颗粒通过模糊集理论被翻译成一组前-后规则,其中对于模型输出,分配了两个不同的类别,即低和高,具有不同程度的证据。结果表明,可以根据特定范围内峰度和标准差的值对疲劳段进行分类,并进一步将其作为疲劳数据编辑过程的一部分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The identification of low fatigue damage using fuzzy double clustering framework
Identifying damaging or non-damaging events in long records of fatigue data is a crux of recapitulating pristine data. In this article, a fuzzy double clustering framework (DCf) is utilized to classify the fatigue segment by exploiting two typical statistical features; kurtosis and the standard deviation. In the first stage, segments are assigned to a number of similar groups to generate multi-dimensional prototypes. Then, the resulting multi-dimensional prototypes are projected onto each featuring space of the input variables. On each dimension, a hierarchical clustering is applied to extract the information granules. For ease of interpretability, the granules are translated into a set of antecedent-consequent rules by means of a fuzzy set theory where for the model output, two distinct classes namely low and high with different degrees of evidence are assigned. The results reveal that the fatigue segments could be classified according to the value of kurtosis and standard deviation in a specific range where further, it can be a part of a fatigue data editing process
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信