通过调整参数提高自适应支持权重方法的性能

T. Guan, Gexiang Zhang
{"title":"通过调整参数提高自适应支持权重方法的性能","authors":"T. Guan, Gexiang Zhang","doi":"10.1109/ICACI.2012.6463153","DOIUrl":null,"url":null,"abstract":"Since Yoon and Kweon proposed the Adaptive Support-Weight approach (ASW) based on color similarity and geometric proximity, local stereo matching methods have experienced great improvement, even are better than most of global approaches. In ASW, how to choose proper parameters is a very difficult and ongoing issue. Until now most studies on ASW used empirical parameter values and little work focused on the discussion of the ASW parameter setting. In this paper, we presented a Relational Analysis Method (RAM) to investigate the effects of different parameters on the ASW performance. RAM simultaneously considers the changes of multiple parameters of ASW. Middlebury test platform and four standard test images are applied to conduct experiments. The results show that the different combinations of multiple parameters have significant influences on the ASW performance. The average bad pixels of the four images vary from 45.4% to 8.66%. The ASW performance obtained by using appropriate parameters is much better than several modified ASW methods. Thus through tuning the parameters of ASW, the performance can be greatly improved.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance enhancement of Adaptive Support-Weight approach by tuning parameters\",\"authors\":\"T. Guan, Gexiang Zhang\",\"doi\":\"10.1109/ICACI.2012.6463153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since Yoon and Kweon proposed the Adaptive Support-Weight approach (ASW) based on color similarity and geometric proximity, local stereo matching methods have experienced great improvement, even are better than most of global approaches. In ASW, how to choose proper parameters is a very difficult and ongoing issue. Until now most studies on ASW used empirical parameter values and little work focused on the discussion of the ASW parameter setting. In this paper, we presented a Relational Analysis Method (RAM) to investigate the effects of different parameters on the ASW performance. RAM simultaneously considers the changes of multiple parameters of ASW. Middlebury test platform and four standard test images are applied to conduct experiments. The results show that the different combinations of multiple parameters have significant influences on the ASW performance. The average bad pixels of the four images vary from 45.4% to 8.66%. The ASW performance obtained by using appropriate parameters is much better than several modified ASW methods. Thus through tuning the parameters of ASW, the performance can be greatly improved.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自Yoon和Kweon提出基于颜色相似度和几何接近度的自适应支持权重方法(ASW)以来,局部立体匹配方法得到了很大的改进,甚至优于大多数全局匹配方法。在反潜战中,如何选择合适的参数是一个非常困难和持续的问题。迄今为止,关于反潜战的研究大多采用经验参数值,对反潜战参数设置的讨论较少。在本文中,我们提出了一种关联分析方法(RAM)来研究不同参数对ASW性能的影响。RAM同时考虑了反潜战多个参数的变化。使用Middlebury测试平台和四个标准测试图像进行实验。结果表明,多个参数的不同组合对反潜战性能有显著影响。四幅图像的平均不良像素从45.4%到8.66%不等。采用适当的参数得到的反潜战性能比几种改进的反潜战方法要好得多。因此,通过调整反潜战的参数,可以大大提高反潜战的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance enhancement of Adaptive Support-Weight approach by tuning parameters
Since Yoon and Kweon proposed the Adaptive Support-Weight approach (ASW) based on color similarity and geometric proximity, local stereo matching methods have experienced great improvement, even are better than most of global approaches. In ASW, how to choose proper parameters is a very difficult and ongoing issue. Until now most studies on ASW used empirical parameter values and little work focused on the discussion of the ASW parameter setting. In this paper, we presented a Relational Analysis Method (RAM) to investigate the effects of different parameters on the ASW performance. RAM simultaneously considers the changes of multiple parameters of ASW. Middlebury test platform and four standard test images are applied to conduct experiments. The results show that the different combinations of multiple parameters have significant influences on the ASW performance. The average bad pixels of the four images vary from 45.4% to 8.66%. The ASW performance obtained by using appropriate parameters is much better than several modified ASW methods. Thus through tuning the parameters of ASW, the performance can be greatly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信