磁共振及双能量增强乳房x线摄影对乳房肿块的检测与分析

Soumaya Trabelsi Ben Ameur, L. Wendling, D. Sellami
{"title":"磁共振及双能量增强乳房x线摄影对乳房肿块的检测与分析","authors":"Soumaya Trabelsi Ben Ameur, L. Wendling, D. Sellami","doi":"10.1109/IPAS.2016.7880152","DOIUrl":null,"url":null,"abstract":"This paper focuses on breast masses analysis from two different modalities: Magnetic Resonance Imaging (MRI) and Dual-Energy Contrast Enhanced Digital Mammography (DECEDM). After the segmentation step, a set of texture and shape features are extracted from both MRI and DECEDM. Then textural and morphological information extracted from the two modalities are combined in order to improve breast cancer detection. Achieved results show that features combination extracted from two different breast images modalities can give a better characterization of breast cancer with a CCR of 96%.","PeriodicalId":283737,"journal":{"name":"2016 International Image Processing, Applications and Systems (IPAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detection and analysis of breast masses from MRIs and dual energy contrast enhanced mammography\",\"authors\":\"Soumaya Trabelsi Ben Ameur, L. Wendling, D. Sellami\",\"doi\":\"10.1109/IPAS.2016.7880152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on breast masses analysis from two different modalities: Magnetic Resonance Imaging (MRI) and Dual-Energy Contrast Enhanced Digital Mammography (DECEDM). After the segmentation step, a set of texture and shape features are extracted from both MRI and DECEDM. Then textural and morphological information extracted from the two modalities are combined in order to improve breast cancer detection. Achieved results show that features combination extracted from two different breast images modalities can give a better characterization of breast cancer with a CCR of 96%.\",\"PeriodicalId\":283737,\"journal\":{\"name\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Image Processing, Applications and Systems (IPAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPAS.2016.7880152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Image Processing, Applications and Systems (IPAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPAS.2016.7880152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文重点介绍了两种不同方式的乳房肿块分析:磁共振成像(MRI)和双能增强数字乳房x线摄影(DECEDM)。在分割步骤之后,分别从MRI和DECEDM中提取一组纹理和形状特征。然后将两种模式提取的纹理和形态信息相结合,以提高乳腺癌的检测效果。已取得的结果表明,从两种不同的乳房图像模式中提取的特征组合可以更好地表征乳腺癌,CCR为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and analysis of breast masses from MRIs and dual energy contrast enhanced mammography
This paper focuses on breast masses analysis from two different modalities: Magnetic Resonance Imaging (MRI) and Dual-Energy Contrast Enhanced Digital Mammography (DECEDM). After the segmentation step, a set of texture and shape features are extracted from both MRI and DECEDM. Then textural and morphological information extracted from the two modalities are combined in order to improve breast cancer detection. Achieved results show that features combination extracted from two different breast images modalities can give a better characterization of breast cancer with a CCR of 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信