{"title":"进化多样的吃豆女士游戏代理使用遗传编程","authors":"Atif M. Alhejali, S. Lucas","doi":"10.1109/UKCI.2010.5625586","DOIUrl":null,"url":null,"abstract":"This paper uses genetic programming (GP) to evolve a variety of reactive agents for a simulated version of the classic arcade game Ms. Pac-Man. A diverse set of behaviours were evolved using the same GP setup in three different versions of the game. The results show that GP is able to evolve controllers that are well-matched to the game used for evolution and, in some cases, also generalise well to previously unseen mazes. For comparison purposes, we also designed a controller manually using the same function set as GP. GP was able to significantly outperform this hand-designed controller. The best evolved controllers are competitive with the best reactive controllers reported for this problem.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"115 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Evolving diverse Ms. Pac-Man playing agents using genetic programming\",\"authors\":\"Atif M. Alhejali, S. Lucas\",\"doi\":\"10.1109/UKCI.2010.5625586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses genetic programming (GP) to evolve a variety of reactive agents for a simulated version of the classic arcade game Ms. Pac-Man. A diverse set of behaviours were evolved using the same GP setup in three different versions of the game. The results show that GP is able to evolve controllers that are well-matched to the game used for evolution and, in some cases, also generalise well to previously unseen mazes. For comparison purposes, we also designed a controller manually using the same function set as GP. GP was able to significantly outperform this hand-designed controller. The best evolved controllers are competitive with the best reactive controllers reported for this problem.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"115 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving diverse Ms. Pac-Man playing agents using genetic programming
This paper uses genetic programming (GP) to evolve a variety of reactive agents for a simulated version of the classic arcade game Ms. Pac-Man. A diverse set of behaviours were evolved using the same GP setup in three different versions of the game. The results show that GP is able to evolve controllers that are well-matched to the game used for evolution and, in some cases, also generalise well to previously unseen mazes. For comparison purposes, we also designed a controller manually using the same function set as GP. GP was able to significantly outperform this hand-designed controller. The best evolved controllers are competitive with the best reactive controllers reported for this problem.