进化多样的吃豆女士游戏代理使用遗传编程

Atif M. Alhejali, S. Lucas
{"title":"进化多样的吃豆女士游戏代理使用遗传编程","authors":"Atif M. Alhejali, S. Lucas","doi":"10.1109/UKCI.2010.5625586","DOIUrl":null,"url":null,"abstract":"This paper uses genetic programming (GP) to evolve a variety of reactive agents for a simulated version of the classic arcade game Ms. Pac-Man. A diverse set of behaviours were evolved using the same GP setup in three different versions of the game. The results show that GP is able to evolve controllers that are well-matched to the game used for evolution and, in some cases, also generalise well to previously unseen mazes. For comparison purposes, we also designed a controller manually using the same function set as GP. GP was able to significantly outperform this hand-designed controller. The best evolved controllers are competitive with the best reactive controllers reported for this problem.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"115 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Evolving diverse Ms. Pac-Man playing agents using genetic programming\",\"authors\":\"Atif M. Alhejali, S. Lucas\",\"doi\":\"10.1109/UKCI.2010.5625586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses genetic programming (GP) to evolve a variety of reactive agents for a simulated version of the classic arcade game Ms. Pac-Man. A diverse set of behaviours were evolved using the same GP setup in three different versions of the game. The results show that GP is able to evolve controllers that are well-matched to the game used for evolution and, in some cases, also generalise well to previously unseen mazes. For comparison purposes, we also designed a controller manually using the same function set as GP. GP was able to significantly outperform this hand-designed controller. The best evolved controllers are competitive with the best reactive controllers reported for this problem.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"115 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

针对经典街机游戏《吃豆人小姐》的模拟版本,本文采用遗传编程(GP)方法来进化各种反应代理。在三个不同版本的游戏中,我们使用相同的GP设置进化出了一系列不同的行为。结果表明,GP能够进化出与游戏进化相匹配的控制器,在某些情况下,还能很好地推广到以前看不见的迷宫。为了比较,我们还使用与GP相同的功能集手动设计了一个控制器。GP的性能明显优于这款手工设计的控制器。最佳进化控制器与针对此问题报告的最佳反应控制器是竞争的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving diverse Ms. Pac-Man playing agents using genetic programming
This paper uses genetic programming (GP) to evolve a variety of reactive agents for a simulated version of the classic arcade game Ms. Pac-Man. A diverse set of behaviours were evolved using the same GP setup in three different versions of the game. The results show that GP is able to evolve controllers that are well-matched to the game used for evolution and, in some cases, also generalise well to previously unseen mazes. For comparison purposes, we also designed a controller manually using the same function set as GP. GP was able to significantly outperform this hand-designed controller. The best evolved controllers are competitive with the best reactive controllers reported for this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信