{"title":"基于可穿戴传感器的同步动作识别和人体全身运动与动力学预测","authors":"Kourosh Darvish, S. Ivaldi, D. Pucci","doi":"10.1109/Humanoids53995.2022.10000122","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to solve simultaneously the problems of human activity recognition and whole-body motion and dynamics prediction for real-time applications. Starting from the dynamics of human motion and motor system theory, the notion of mixture of experts from deep learning has been extended to address this problem. In the proposed approach, experts are modelled as a sequence-to-sequence recurrent neural networks (RNN) architecture. Experiments show the results of 66-DoF real-world human motion prediction and action recognition during different tasks like walking and rotating. The code associated with this paper is available at: github.com/ami-iit/paper_darvish_2022_humanoids_action-kindyn-predicition","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous Action Recognition and Human Whole-Body Motion and Dynamics Prediction from Wearable Sensors\",\"authors\":\"Kourosh Darvish, S. Ivaldi, D. Pucci\",\"doi\":\"10.1109/Humanoids53995.2022.10000122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to solve simultaneously the problems of human activity recognition and whole-body motion and dynamics prediction for real-time applications. Starting from the dynamics of human motion and motor system theory, the notion of mixture of experts from deep learning has been extended to address this problem. In the proposed approach, experts are modelled as a sequence-to-sequence recurrent neural networks (RNN) architecture. Experiments show the results of 66-DoF real-world human motion prediction and action recognition during different tasks like walking and rotating. The code associated with this paper is available at: github.com/ami-iit/paper_darvish_2022_humanoids_action-kindyn-predicition\",\"PeriodicalId\":180816,\"journal\":{\"name\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids53995.2022.10000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous Action Recognition and Human Whole-Body Motion and Dynamics Prediction from Wearable Sensors
This paper presents a novel approach to solve simultaneously the problems of human activity recognition and whole-body motion and dynamics prediction for real-time applications. Starting from the dynamics of human motion and motor system theory, the notion of mixture of experts from deep learning has been extended to address this problem. In the proposed approach, experts are modelled as a sequence-to-sequence recurrent neural networks (RNN) architecture. Experiments show the results of 66-DoF real-world human motion prediction and action recognition during different tasks like walking and rotating. The code associated with this paper is available at: github.com/ami-iit/paper_darvish_2022_humanoids_action-kindyn-predicition