高光谱图像中鲁棒信号子空间识别算法:比较分析

N. Acito, G. Corsini, M. Diani
{"title":"高光谱图像中鲁棒信号子空间识别算法:比较分析","authors":"N. Acito, G. Corsini, M. Diani","doi":"10.1109/WHISPERS.2009.5288995","DOIUrl":null,"url":null,"abstract":"In this work we present a comparative analysis of the performance of two recently proposed algorithms for signal subspace identification (SSI) and dimensionality reduction (DR) in hyperspectral data. Such SSI algorithms are robust to the presence of rare signal components and are particularly suitable when DR is adopted as a pre-processing step in small target detection applications.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for robust signal subspace identification in hyperspectral images: A comparative analysis\",\"authors\":\"N. Acito, G. Corsini, M. Diani\",\"doi\":\"10.1109/WHISPERS.2009.5288995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a comparative analysis of the performance of two recently proposed algorithms for signal subspace identification (SSI) and dimensionality reduction (DR) in hyperspectral data. Such SSI algorithms are robust to the presence of rare signal components and are particularly suitable when DR is adopted as a pre-processing step in small target detection applications.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5288995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了两种最近提出的算法在高光谱数据中的信号子空间识别(SSI)和降维(DR)的性能比较分析。这种SSI算法对稀有信号成分的存在具有鲁棒性,特别适用于在小目标检测应用中采用DR作为预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for robust signal subspace identification in hyperspectral images: A comparative analysis
In this work we present a comparative analysis of the performance of two recently proposed algorithms for signal subspace identification (SSI) and dimensionality reduction (DR) in hyperspectral data. Such SSI algorithms are robust to the presence of rare signal components and are particularly suitable when DR is adopted as a pre-processing step in small target detection applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信