不同废料替代粗骨料的正强混凝土力学性能研究

P. Aziz, M. Abdulkadir
{"title":"不同废料替代粗骨料的正强混凝土力学性能研究","authors":"P. Aziz, M. Abdulkadir","doi":"10.17656/SJES.10141","DOIUrl":null,"url":null,"abstract":"In this study, the effect of different types of waste materials on the mechanical properties of normal strength concrete was investigated. Three types of waste material crumbed rubber, granular plastic, and crushed brick with different percentage up to 15% ( by weight of coarse aggregate) were used. The effect of waste material on the compressive strength, splitting tensile strength, and static elastic modulus of hardened concrete for 28 days of curing with constant w/c= 0.45 were studied. The maximum loss in concrete compressive strength was recorded to be 54.95%, 50.31%, and 20.41% for concrete mix with 15% crumbed rubber and plastic aggregate and 5% crushed brick particles. Maximum reduction in splitting tensile strength noticed to be 65%, 43.15%, and 13.59% for 15% replacement of crumbed rubber, granular plastic, and crushed brick respectively. The maximum loss in static elastic modulus was found to be 48.29%, 27.14, and 11.23% for concrete mix with 15% crumbed rubber, granular plastic, and 5% crushed brick. From test results it is concluded that up to 15% waste material can be safely used to produce this type of recycled concrete.","PeriodicalId":307862,"journal":{"name":"Sulaimani Journal for Engineering Sciences","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanical Properties of Normal Strength Concrete Containing Different Types of Waste Material as Coarse Aggregate Replacement\",\"authors\":\"P. Aziz, M. Abdulkadir\",\"doi\":\"10.17656/SJES.10141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of different types of waste materials on the mechanical properties of normal strength concrete was investigated. Three types of waste material crumbed rubber, granular plastic, and crushed brick with different percentage up to 15% ( by weight of coarse aggregate) were used. The effect of waste material on the compressive strength, splitting tensile strength, and static elastic modulus of hardened concrete for 28 days of curing with constant w/c= 0.45 were studied. The maximum loss in concrete compressive strength was recorded to be 54.95%, 50.31%, and 20.41% for concrete mix with 15% crumbed rubber and plastic aggregate and 5% crushed brick particles. Maximum reduction in splitting tensile strength noticed to be 65%, 43.15%, and 13.59% for 15% replacement of crumbed rubber, granular plastic, and crushed brick respectively. The maximum loss in static elastic modulus was found to be 48.29%, 27.14, and 11.23% for concrete mix with 15% crumbed rubber, granular plastic, and 5% crushed brick. From test results it is concluded that up to 15% waste material can be safely used to produce this type of recycled concrete.\",\"PeriodicalId\":307862,\"journal\":{\"name\":\"Sulaimani Journal for Engineering Sciences\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sulaimani Journal for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17656/SJES.10141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sulaimani Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17656/SJES.10141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了不同类型的废料对正强混凝土力学性能的影响。使用了三种不同比例(按粗骨料重量计)的废橡胶、颗粒塑料和碎砖。研究了在w/c= 0.45恒定养护条件下,废料对硬化混凝土28d抗压强度、劈裂抗拉强度和静弹性模量的影响。当掺入15%橡塑骨料和5%碎砖颗粒时,混凝土抗压强度最大损失分别为54.95%、50.31%和20.41%。当更换15%的碎橡胶、颗粒塑料和碎砖时,劈裂抗拉强度的最大降幅分别为65%、43.15%和13.59%。当橡胶粉、颗粒塑料粉和砖粉掺量分别为15%、27.14%和11.23%时,混凝土静弹性模量最大损失为48.29%、27.14%和11.23%。从试验结果可以得出结论,高达15%的废料可以安全地用于生产这种类型的再生混凝土。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Properties of Normal Strength Concrete Containing Different Types of Waste Material as Coarse Aggregate Replacement
In this study, the effect of different types of waste materials on the mechanical properties of normal strength concrete was investigated. Three types of waste material crumbed rubber, granular plastic, and crushed brick with different percentage up to 15% ( by weight of coarse aggregate) were used. The effect of waste material on the compressive strength, splitting tensile strength, and static elastic modulus of hardened concrete for 28 days of curing with constant w/c= 0.45 were studied. The maximum loss in concrete compressive strength was recorded to be 54.95%, 50.31%, and 20.41% for concrete mix with 15% crumbed rubber and plastic aggregate and 5% crushed brick particles. Maximum reduction in splitting tensile strength noticed to be 65%, 43.15%, and 13.59% for 15% replacement of crumbed rubber, granular plastic, and crushed brick respectively. The maximum loss in static elastic modulus was found to be 48.29%, 27.14, and 11.23% for concrete mix with 15% crumbed rubber, granular plastic, and 5% crushed brick. From test results it is concluded that up to 15% waste material can be safely used to produce this type of recycled concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信