{"title":"RDIS:一种递归定义的可逆集合方案,用于在电阻内存中容忍多个卡滞故障","authors":"R. Melhem, R. Maddah, Sangyeun Cho","doi":"10.1109/DSN.2012.6263949","DOIUrl":null,"url":null,"abstract":"With their potential for high scalability and density, resistive memories are foreseen as a promising technology that overcomes the physical limitations confronted by charge-based DRAM and flash memory. Yet, a main burden towards the successful adoption and commercialization of resistive memories is their low cell reliability caused by process variation and limited write endurance. Typically, faulty and worn-out cells are permanently stuck at either `0' or `1'. To overcome the challenge, a robust error correction scheme that can recover from many hard faults is required. In this paper, we propose and evaluate RDIS, a novel scheme to efficiently tolerate memory stuck-at faults. RDIS allows for the correct retrieval of data by recursively determining and efficiently keeping track of the positions of the bits that are stuck at a value different from the ones that are written, and then, at read time, by inverting the values read from those positions. RDIS is characterized by a very low probability of failure that increases slowly with the relative increase in the number of faults. Moreover, RDIS tolerates many more faults than the best existing scheme-by up to 95% on average at the same overhead level.","PeriodicalId":236791,"journal":{"name":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"RDIS: A recursively defined invertible set scheme to tolerate multiple stuck-at faults in resistive memory\",\"authors\":\"R. Melhem, R. Maddah, Sangyeun Cho\",\"doi\":\"10.1109/DSN.2012.6263949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With their potential for high scalability and density, resistive memories are foreseen as a promising technology that overcomes the physical limitations confronted by charge-based DRAM and flash memory. Yet, a main burden towards the successful adoption and commercialization of resistive memories is their low cell reliability caused by process variation and limited write endurance. Typically, faulty and worn-out cells are permanently stuck at either `0' or `1'. To overcome the challenge, a robust error correction scheme that can recover from many hard faults is required. In this paper, we propose and evaluate RDIS, a novel scheme to efficiently tolerate memory stuck-at faults. RDIS allows for the correct retrieval of data by recursively determining and efficiently keeping track of the positions of the bits that are stuck at a value different from the ones that are written, and then, at read time, by inverting the values read from those positions. RDIS is characterized by a very low probability of failure that increases slowly with the relative increase in the number of faults. Moreover, RDIS tolerates many more faults than the best existing scheme-by up to 95% on average at the same overhead level.\",\"PeriodicalId\":236791,\"journal\":{\"name\":\"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2012.6263949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2012.6263949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RDIS: A recursively defined invertible set scheme to tolerate multiple stuck-at faults in resistive memory
With their potential for high scalability and density, resistive memories are foreseen as a promising technology that overcomes the physical limitations confronted by charge-based DRAM and flash memory. Yet, a main burden towards the successful adoption and commercialization of resistive memories is their low cell reliability caused by process variation and limited write endurance. Typically, faulty and worn-out cells are permanently stuck at either `0' or `1'. To overcome the challenge, a robust error correction scheme that can recover from many hard faults is required. In this paper, we propose and evaluate RDIS, a novel scheme to efficiently tolerate memory stuck-at faults. RDIS allows for the correct retrieval of data by recursively determining and efficiently keeping track of the positions of the bits that are stuck at a value different from the ones that are written, and then, at read time, by inverting the values read from those positions. RDIS is characterized by a very low probability of failure that increases slowly with the relative increase in the number of faults. Moreover, RDIS tolerates many more faults than the best existing scheme-by up to 95% on average at the same overhead level.