第十二章。基于增材制造的新型微反应器设计

P. Löb
{"title":"第十二章。基于增材制造的新型微反应器设计","authors":"P. Löb","doi":"10.1039/9781788016094-00388","DOIUrl":null,"url":null,"abstract":"Continuous processing is playing an increasing role in the development and manufacturing of pharmaceuticals and fine chemicals. Linked to this development is the interest in flow chemistry that means milli- or even microstructured reactors and their use for continuous processing. These reactors enable a precise control over the chemical process due to their small internal structuring and with that the access to unusual process conditions (Novel Process Windows). Additionally, other more operational advantages of interest for chemical production purposes are linked to the flow chemistry approach – like addressing the need for flexible and modular production concepts, the straightforward scale-up approach and the amenability to automated operation and integration of process analytical technologies. Classic unit operations like mixing and heat exchange are thereby already addressed by a range of commercially available devices. With the advent or broader uptake of additive manufacturing techniques in general, these technologies are also increasingly applied for miniaturized chemical reactors. While current examples mainly stem from lab-scale investigations, there is a clear trend and ambition towards addressing industrial application and the related harsh process conditions and higher throughput ranges. This chapter briefly recaps central aspects of flow chemistry and the related reactor technology before introducing the main additive manufacturing techniques used for the realisation of microsystems and micro- and milli-structured reactors as well as describing corresponding examples. A special focus is given thereby on selective laser melting to realize finely structured 3D chemical reactors in metal since this technique is seen as most promising for realising structured reactors against the background of industrial chemical production.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chapter 12. New Microreactor Designs for Practical Applications Realized by Additive Manufacturing\",\"authors\":\"P. Löb\",\"doi\":\"10.1039/9781788016094-00388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous processing is playing an increasing role in the development and manufacturing of pharmaceuticals and fine chemicals. Linked to this development is the interest in flow chemistry that means milli- or even microstructured reactors and their use for continuous processing. These reactors enable a precise control over the chemical process due to their small internal structuring and with that the access to unusual process conditions (Novel Process Windows). Additionally, other more operational advantages of interest for chemical production purposes are linked to the flow chemistry approach – like addressing the need for flexible and modular production concepts, the straightforward scale-up approach and the amenability to automated operation and integration of process analytical technologies. Classic unit operations like mixing and heat exchange are thereby already addressed by a range of commercially available devices. With the advent or broader uptake of additive manufacturing techniques in general, these technologies are also increasingly applied for miniaturized chemical reactors. While current examples mainly stem from lab-scale investigations, there is a clear trend and ambition towards addressing industrial application and the related harsh process conditions and higher throughput ranges. This chapter briefly recaps central aspects of flow chemistry and the related reactor technology before introducing the main additive manufacturing techniques used for the realisation of microsystems and micro- and milli-structured reactors as well as describing corresponding examples. A special focus is given thereby on selective laser melting to realize finely structured 3D chemical reactors in metal since this technique is seen as most promising for realising structured reactors against the background of industrial chemical production.\",\"PeriodicalId\":202204,\"journal\":{\"name\":\"Green Chemistry Series\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016094-00388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016094-00388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

连续加工在药品和精细化学品的开发和生产中发挥着越来越重要的作用。与这一发展相关的是对流动化学的兴趣,这意味着微米甚至微结构反应器及其用于连续处理。这些反应器由于其内部结构小,并且可以进入不寻常的过程条件(新过程窗口),因此可以精确控制化学过程。此外,化工生产的其他更多操作优势与流动化学方法有关,例如解决灵活和模块化生产概念的需求,直接的放大方法以及自动化操作和过程分析技术集成的适应性。因此,混合和热交换等传统单元操作已经由一系列商用设备解决。随着增材制造技术的出现或广泛采用,这些技术也越来越多地应用于小型化化学反应器。虽然目前的例子主要来自实验室规模的调查,但有一个明显的趋势和雄心,即解决工业应用和相关的苛刻工艺条件和更高的吞吐量范围。本章简要概述了流动化学的核心方面和相关的反应器技术,然后介绍了用于实现微系统和微结构和微结构反应器的主要增材制造技术,并描述了相应的例子。因此,特别关注选择性激光熔化以实现金属中精细结构的3D化学反应器,因为该技术被认为是在工业化学生产背景下实现结构化反应器的最有希望的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chapter 12. New Microreactor Designs for Practical Applications Realized by Additive Manufacturing
Continuous processing is playing an increasing role in the development and manufacturing of pharmaceuticals and fine chemicals. Linked to this development is the interest in flow chemistry that means milli- or even microstructured reactors and their use for continuous processing. These reactors enable a precise control over the chemical process due to their small internal structuring and with that the access to unusual process conditions (Novel Process Windows). Additionally, other more operational advantages of interest for chemical production purposes are linked to the flow chemistry approach – like addressing the need for flexible and modular production concepts, the straightforward scale-up approach and the amenability to automated operation and integration of process analytical technologies. Classic unit operations like mixing and heat exchange are thereby already addressed by a range of commercially available devices. With the advent or broader uptake of additive manufacturing techniques in general, these technologies are also increasingly applied for miniaturized chemical reactors. While current examples mainly stem from lab-scale investigations, there is a clear trend and ambition towards addressing industrial application and the related harsh process conditions and higher throughput ranges. This chapter briefly recaps central aspects of flow chemistry and the related reactor technology before introducing the main additive manufacturing techniques used for the realisation of microsystems and micro- and milli-structured reactors as well as describing corresponding examples. A special focus is given thereby on selective laser melting to realize finely structured 3D chemical reactors in metal since this technique is seen as most promising for realising structured reactors against the background of industrial chemical production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信