一种机动目标跟踪的有效IMM算法

Shi Lei, L. Weihua, Liu Zuoliang
{"title":"一种机动目标跟踪的有效IMM算法","authors":"Shi Lei, L. Weihua, Liu Zuoliang","doi":"10.1109/ICSIGP.1996.566240","DOIUrl":null,"url":null,"abstract":"To reduce the complexity of algorithms for tracking maneuvering targets, a two stage filter scheme based on non-zero mean target dynamical model has been developed, and to maintain good tracking performance for non-maneuvering targets, an improved interacting multiple model (IMM) algorithm with the two stage filter has been suggested. The Monte Carlo simulation shows that this scheme posses a good tracking performance for both high maneuvering and non-maneuvering targets with substantially reduced computing burden.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An effective IMM algorithm for maneuvering target tracking\",\"authors\":\"Shi Lei, L. Weihua, Liu Zuoliang\",\"doi\":\"10.1109/ICSIGP.1996.566240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the complexity of algorithms for tracking maneuvering targets, a two stage filter scheme based on non-zero mean target dynamical model has been developed, and to maintain good tracking performance for non-maneuvering targets, an improved interacting multiple model (IMM) algorithm with the two stage filter has been suggested. The Monte Carlo simulation shows that this scheme posses a good tracking performance for both high maneuvering and non-maneuvering targets with substantially reduced computing burden.\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.566240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了降低机动目标跟踪算法的复杂度,提出了一种基于非零均值目标动力学模型的两级滤波方案;为了保持对非机动目标的良好跟踪性能,提出了一种改进的多模型交互两级滤波算法。蒙特卡罗仿真表明,该方案对高机动目标和非机动目标都具有良好的跟踪性能,大大减少了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective IMM algorithm for maneuvering target tracking
To reduce the complexity of algorithms for tracking maneuvering targets, a two stage filter scheme based on non-zero mean target dynamical model has been developed, and to maintain good tracking performance for non-maneuvering targets, an improved interacting multiple model (IMM) algorithm with the two stage filter has been suggested. The Monte Carlo simulation shows that this scheme posses a good tracking performance for both high maneuvering and non-maneuvering targets with substantially reduced computing burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信