{"title":"FastPass","authors":"Fangzhou Wang, Jinwei Liu, E. F. Young","doi":"10.1145/3569052.3571879","DOIUrl":null,"url":null,"abstract":"Pin access analysis is a critical step in detailed routing. With complicated design rules and pin shapes, efficient and accurate pin accessibility evaluation is desirable in many physical design scenarios. To this end, we present FastPass, a fast and robust pin access analysis framework, which first generates design rule checking (DRC)-clean pin access route candidates for each pin, pre-computes incompatible pairs of routes, and then uses incremental SAT solving to find an optimized pin access scheme. Experimental results on the ISPD 2018 benchmarks show that FastPass produces DRC-clean pin access schemes for all cases while being 14.7× faster than the known best pin access analysis framework on average.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FastPass\",\"authors\":\"Fangzhou Wang, Jinwei Liu, E. F. Young\",\"doi\":\"10.1145/3569052.3571879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pin access analysis is a critical step in detailed routing. With complicated design rules and pin shapes, efficient and accurate pin accessibility evaluation is desirable in many physical design scenarios. To this end, we present FastPass, a fast and robust pin access analysis framework, which first generates design rule checking (DRC)-clean pin access route candidates for each pin, pre-computes incompatible pairs of routes, and then uses incremental SAT solving to find an optimized pin access scheme. Experimental results on the ISPD 2018 benchmarks show that FastPass produces DRC-clean pin access schemes for all cases while being 14.7× faster than the known best pin access analysis framework on average.\",\"PeriodicalId\":169581,\"journal\":{\"name\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 International Symposium on Physical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569052.3571879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3571879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pin access analysis is a critical step in detailed routing. With complicated design rules and pin shapes, efficient and accurate pin accessibility evaluation is desirable in many physical design scenarios. To this end, we present FastPass, a fast and robust pin access analysis framework, which first generates design rule checking (DRC)-clean pin access route candidates for each pin, pre-computes incompatible pairs of routes, and then uses incremental SAT solving to find an optimized pin access scheme. Experimental results on the ISPD 2018 benchmarks show that FastPass produces DRC-clean pin access schemes for all cases while being 14.7× faster than the known best pin access analysis framework on average.