用于发现Facebook年轻成人用户群体兴趣的泰国文本主题建模系统

Rachsuda Jiamthapthaksin
{"title":"用于发现Facebook年轻成人用户群体兴趣的泰国文本主题建模系统","authors":"Rachsuda Jiamthapthaksin","doi":"10.1109/ICSITECH.2016.7852614","DOIUrl":null,"url":null,"abstract":"Facebook is the largest digital social network in the world, and is the most popular social network in Thailand. This paper proposes Thai text topic modeling system that turns Facebook posts into valuable users' group interests. Latent Dirichlet Allocation (LDA) for topic modeling, if applied directly on Thai text posts, does not capture well the group interests due to unique characteristics of the data like intentional typo. The main contributions of the paper include the integration of Thai slangs from posts for extracting Thai words, insertion and stop words removal, slang stemming, and applying LDA for seed word acquisition and topic modeling enhancement. The experiments performed on Thai Facebook posts of undergraduate student volunteers at Assumption University was used to demonstrate feature size reduction, model enhancement, and discovery of meaningful group interests.","PeriodicalId":447090,"journal":{"name":"2016 2nd International Conference on Science in Information Technology (ICSITech)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thai text topic modeling system for discovering group interests of Facebook young adult users\",\"authors\":\"Rachsuda Jiamthapthaksin\",\"doi\":\"10.1109/ICSITECH.2016.7852614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facebook is the largest digital social network in the world, and is the most popular social network in Thailand. This paper proposes Thai text topic modeling system that turns Facebook posts into valuable users' group interests. Latent Dirichlet Allocation (LDA) for topic modeling, if applied directly on Thai text posts, does not capture well the group interests due to unique characteristics of the data like intentional typo. The main contributions of the paper include the integration of Thai slangs from posts for extracting Thai words, insertion and stop words removal, slang stemming, and applying LDA for seed word acquisition and topic modeling enhancement. The experiments performed on Thai Facebook posts of undergraduate student volunteers at Assumption University was used to demonstrate feature size reduction, model enhancement, and discovery of meaningful group interests.\",\"PeriodicalId\":447090,\"journal\":{\"name\":\"2016 2nd International Conference on Science in Information Technology (ICSITech)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Science in Information Technology (ICSITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSITECH.2016.7852614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2016.7852614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Facebook是世界上最大的数字社交网络,也是泰国最受欢迎的社交网络。本文提出了一种泰国文本主题建模系统,该系统将Facebook帖子转化为有价值的用户群体兴趣。潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)用于主题建模,如果直接应用于泰国文本帖子,由于数据的独特特征(如故意错字),无法很好地捕捉群体兴趣。本文的主要贡献包括整合帖子中的泰语俚语进行泰语词提取、插入和停止词去除、俚语词干提取以及应用LDA进行种子词获取和主题建模增强。通过对泰国易三仓大学本科生志愿者的Facebook帖子进行的实验,证明了特征尺寸减小、模型增强和有意义的群体兴趣的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thai text topic modeling system for discovering group interests of Facebook young adult users
Facebook is the largest digital social network in the world, and is the most popular social network in Thailand. This paper proposes Thai text topic modeling system that turns Facebook posts into valuable users' group interests. Latent Dirichlet Allocation (LDA) for topic modeling, if applied directly on Thai text posts, does not capture well the group interests due to unique characteristics of the data like intentional typo. The main contributions of the paper include the integration of Thai slangs from posts for extracting Thai words, insertion and stop words removal, slang stemming, and applying LDA for seed word acquisition and topic modeling enhancement. The experiments performed on Thai Facebook posts of undergraduate student volunteers at Assumption University was used to demonstrate feature size reduction, model enhancement, and discovery of meaningful group interests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信