模糊模态逻辑的van Benthem定理

P. Wild, Lutz Schröder, D. Pattinson, B. König
{"title":"模糊模态逻辑的van Benthem定理","authors":"P. Wild, Lutz Schröder, D. Pattinson, B. König","doi":"10.1145/3209108.3209180","DOIUrl":null,"url":null,"abstract":"We present a fuzzy (or quantitative) version of the van Benthem theorem, which characterizes propositional modal logic as the bisimulation-invariant fragment of first-order logic. Specifically, we consider a first-order fuzzy predicate logic along with its modal fragment, and show that the fuzzy first-order formulas that are non-expansive w.r.t. the natural notion of bisimulation distance are exactly those that can be approximated by fuzzy modal formulas.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A van Benthem Theorem for Fuzzy Modal Logic\",\"authors\":\"P. Wild, Lutz Schröder, D. Pattinson, B. König\",\"doi\":\"10.1145/3209108.3209180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fuzzy (or quantitative) version of the van Benthem theorem, which characterizes propositional modal logic as the bisimulation-invariant fragment of first-order logic. Specifically, we consider a first-order fuzzy predicate logic along with its modal fragment, and show that the fuzzy first-order formulas that are non-expansive w.r.t. the natural notion of bisimulation distance are exactly those that can be approximated by fuzzy modal formulas.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一个模糊(或定量)版本的van Benthem定理,它将命题模态逻辑表征为一阶逻辑的双模拟不变片段。具体地说,我们考虑了一阶模糊谓词逻辑及其模态片段,并证明了在双模拟距离的自然概念之外非可扩展的模糊一阶公式正是可以用模糊模态公式近似的模糊一阶公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A van Benthem Theorem for Fuzzy Modal Logic
We present a fuzzy (or quantitative) version of the van Benthem theorem, which characterizes propositional modal logic as the bisimulation-invariant fragment of first-order logic. Specifically, we consider a first-order fuzzy predicate logic along with its modal fragment, and show that the fuzzy first-order formulas that are non-expansive w.r.t. the natural notion of bisimulation distance are exactly those that can be approximated by fuzzy modal formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信