基于RRAM交叉栏的容错二值神经网络

A. Gebregiorgis, Artemis Zografou, S. Hamdioui
{"title":"基于RRAM交叉栏的容错二值神经网络","authors":"A. Gebregiorgis, Artemis Zografou, S. Hamdioui","doi":"10.1109/ETS54262.2022.9810414","DOIUrl":null,"url":null,"abstract":"Computation-In Memory (CIM) using RRAM crossbar array is a promising solution to realize energy-efficient neuromorphic hardware, such as Binary Neural Networks (BNNs). However, RRAM faults restrict the applicability of CIM for BNN implementation. To address this issue, we propose a fault tolerance framework to mitigate the impact of RRAM faults on the accuracy of CIM-based BNN hardware. Evaluation results using MNIST, Fashion-MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms the related works as it restores more than 99% of the RRAM fault induced accuracy reduction with relatively less overhead.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RRAM Crossbar-Based Fault-Tolerant Binary Neural Networks (BNNs)\",\"authors\":\"A. Gebregiorgis, Artemis Zografou, S. Hamdioui\",\"doi\":\"10.1109/ETS54262.2022.9810414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation-In Memory (CIM) using RRAM crossbar array is a promising solution to realize energy-efficient neuromorphic hardware, such as Binary Neural Networks (BNNs). However, RRAM faults restrict the applicability of CIM for BNN implementation. To address this issue, we propose a fault tolerance framework to mitigate the impact of RRAM faults on the accuracy of CIM-based BNN hardware. Evaluation results using MNIST, Fashion-MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms the related works as it restores more than 99% of the RRAM fault induced accuracy reduction with relatively less overhead.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

内存计算(CIM)是实现高效节能的神经形态硬件,如二元神经网络(BNNs)的一种很有前途的方法。然而,RRAM故障限制了CIM在BNN实现中的适用性。为了解决这个问题,我们提出了一个容错框架,以减轻RRAM故障对基于cim的BNN硬件精度的影响。使用MNIST、Fashion-MNIST和CIFAR-10数据集的评估结果表明,所提出的框架优于相关工作,因为它以相对较少的开销恢复了99%以上的RRAM故障导致的精度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RRAM Crossbar-Based Fault-Tolerant Binary Neural Networks (BNNs)
Computation-In Memory (CIM) using RRAM crossbar array is a promising solution to realize energy-efficient neuromorphic hardware, such as Binary Neural Networks (BNNs). However, RRAM faults restrict the applicability of CIM for BNN implementation. To address this issue, we propose a fault tolerance framework to mitigate the impact of RRAM faults on the accuracy of CIM-based BNN hardware. Evaluation results using MNIST, Fashion-MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms the related works as it restores more than 99% of the RRAM fault induced accuracy reduction with relatively less overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信