一种基于自动阈值选择的图像分割新方法

Y. Zou, Bencheng Chai, Qili Xiao
{"title":"一种基于自动阈值选择的图像分割新方法","authors":"Y. Zou, Bencheng Chai, Qili Xiao","doi":"10.1109/SKG.2010.72","DOIUrl":null,"url":null,"abstract":"This paper presents a new image segmentation approach by suing automatic threshold selection. This approach divides the image into 2 class. The best threshold is got when the separation between the interclass variance and the variance between clasters is the maximal. Experimental results show this new approach can segment images automatically and quickly.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Image Segmentation Approach by Using Automation Threshold Selection\",\"authors\":\"Y. Zou, Bencheng Chai, Qili Xiao\",\"doi\":\"10.1109/SKG.2010.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new image segmentation approach by suing automatic threshold selection. This approach divides the image into 2 class. The best threshold is got when the separation between the interclass variance and the variance between clasters is the maximal. Experimental results show this new approach can segment images automatically and quickly.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于自动阈值选择的图像分割方法。该方法将图像分为2类。当类间方差和类间方差的分离最大时,得到最佳阈值。实验结果表明,该方法能够自动、快速地分割图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Image Segmentation Approach by Using Automation Threshold Selection
This paper presents a new image segmentation approach by suing automatic threshold selection. This approach divides the image into 2 class. The best threshold is got when the separation between the interclass variance and the variance between clasters is the maximal. Experimental results show this new approach can segment images automatically and quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信