{"title":"结合去噪和泽尼克矩的旋转不变特征提取","authors":"G. Chen, W. Xie","doi":"10.1109/ICWAPR.2010.5576326","DOIUrl":null,"url":null,"abstract":"Rotation invariant feature extraction is a classical topic in pattern recognition. It is well known that Zernike moment features are invariant with regard to rotation. However, due to noise present in the unknown pattern image, Zernike moment features can fail to recognize the noisy pattern. In this paper, a new feature extraction method is proposed by combining a wavelet-based denoising method with zernike moment feature extraction in order to achieve improved classification rates. Experimental results demonstrate its superiority over zernike moments without denoising.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rotation invariant feature extraction by combining denoising with Zernike moments\",\"authors\":\"G. Chen, W. Xie\",\"doi\":\"10.1109/ICWAPR.2010.5576326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotation invariant feature extraction is a classical topic in pattern recognition. It is well known that Zernike moment features are invariant with regard to rotation. However, due to noise present in the unknown pattern image, Zernike moment features can fail to recognize the noisy pattern. In this paper, a new feature extraction method is proposed by combining a wavelet-based denoising method with zernike moment feature extraction in order to achieve improved classification rates. Experimental results demonstrate its superiority over zernike moments without denoising.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rotation invariant feature extraction by combining denoising with Zernike moments
Rotation invariant feature extraction is a classical topic in pattern recognition. It is well known that Zernike moment features are invariant with regard to rotation. However, due to noise present in the unknown pattern image, Zernike moment features can fail to recognize the noisy pattern. In this paper, a new feature extraction method is proposed by combining a wavelet-based denoising method with zernike moment feature extraction in order to achieve improved classification rates. Experimental results demonstrate its superiority over zernike moments without denoising.