结合去噪和泽尼克矩的旋转不变特征提取

G. Chen, W. Xie
{"title":"结合去噪和泽尼克矩的旋转不变特征提取","authors":"G. Chen, W. Xie","doi":"10.1109/ICWAPR.2010.5576326","DOIUrl":null,"url":null,"abstract":"Rotation invariant feature extraction is a classical topic in pattern recognition. It is well known that Zernike moment features are invariant with regard to rotation. However, due to noise present in the unknown pattern image, Zernike moment features can fail to recognize the noisy pattern. In this paper, a new feature extraction method is proposed by combining a wavelet-based denoising method with zernike moment feature extraction in order to achieve improved classification rates. Experimental results demonstrate its superiority over zernike moments without denoising.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rotation invariant feature extraction by combining denoising with Zernike moments\",\"authors\":\"G. Chen, W. Xie\",\"doi\":\"10.1109/ICWAPR.2010.5576326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotation invariant feature extraction is a classical topic in pattern recognition. It is well known that Zernike moment features are invariant with regard to rotation. However, due to noise present in the unknown pattern image, Zernike moment features can fail to recognize the noisy pattern. In this paper, a new feature extraction method is proposed by combining a wavelet-based denoising method with zernike moment feature extraction in order to achieve improved classification rates. Experimental results demonstrate its superiority over zernike moments without denoising.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

旋转不变特征提取是模式识别中的一个经典课题。众所周知,泽尼克矩特征对于旋转是不变的。然而,由于未知模式图像中存在噪声,泽尼克矩特征无法识别噪声模式。本文提出了一种新的特征提取方法,将基于小波的去噪方法与泽尼克矩特征提取相结合,以提高分类率。实验结果表明,该方法优于不去噪的泽尼克矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation invariant feature extraction by combining denoising with Zernike moments
Rotation invariant feature extraction is a classical topic in pattern recognition. It is well known that Zernike moment features are invariant with regard to rotation. However, due to noise present in the unknown pattern image, Zernike moment features can fail to recognize the noisy pattern. In this paper, a new feature extraction method is proposed by combining a wavelet-based denoising method with zernike moment feature extraction in order to achieve improved classification rates. Experimental results demonstrate its superiority over zernike moments without denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信