基于窥探的集群VLIW体系结构的寄存器文件能量优化

Rahul Nagpal, Y. Srikant
{"title":"基于窥探的集群VLIW体系结构的寄存器文件能量优化","authors":"Rahul Nagpal, Y. Srikant","doi":"10.1109/SBAC-PAD.2007.35","DOIUrl":null,"url":null,"abstract":"Frequent accesses to the register file make it one of the major sources of energy consumption in ILP architectures. The large number of functional units connected to a large unified register file in VLIW architectures make power dissipation in the register file even worse because of the need for a large number of ports. High power dissipation in a relatively smaller area occupied by a register file leads to a high power density in the register file and makes it one of the prime hot-spots. This makes it highly susceptible to the possibility of a catastrophic heatstroke. This in turn impacts the performance and cost because of the need for periodic cool down and sophisticated packaging and cooling techniques respectively. Clustered VLIW architectures partition the register file among clusters of functional units and reduce the number of ports required thereby reducing the power dissipation. However, we observe that the aggregate accesses to register files in clustered VLIW architectures (and associated energy consumption) become very high compared to the centralized VLIW architectures and this can be attributed to a large number of explicit inter-cluster communications. Snooping based clustered VLIW architectures provide very limited but very fast way of inter-cluster communication by allowing some of the functional units to directly read some of the operands from the register file of some of the other clusters. In this paper, we propose instruction scheduling algorithms that exploit the limited snooping capability to reduce the register file energy consumption on an average by 12% and 18% and improve the overall performance by 5% and 11% for a 2-clustered and a 4-clustered machine respectively, over an earlier state-of-the-art clustered scheduling algorithm when evaluated in the context of snooping based clustered VLIW architectures.","PeriodicalId":261956,"journal":{"name":"19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Register File Energy Optimization for Snooping Based Clustered VLIW Architectures\",\"authors\":\"Rahul Nagpal, Y. Srikant\",\"doi\":\"10.1109/SBAC-PAD.2007.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent accesses to the register file make it one of the major sources of energy consumption in ILP architectures. The large number of functional units connected to a large unified register file in VLIW architectures make power dissipation in the register file even worse because of the need for a large number of ports. High power dissipation in a relatively smaller area occupied by a register file leads to a high power density in the register file and makes it one of the prime hot-spots. This makes it highly susceptible to the possibility of a catastrophic heatstroke. This in turn impacts the performance and cost because of the need for periodic cool down and sophisticated packaging and cooling techniques respectively. Clustered VLIW architectures partition the register file among clusters of functional units and reduce the number of ports required thereby reducing the power dissipation. However, we observe that the aggregate accesses to register files in clustered VLIW architectures (and associated energy consumption) become very high compared to the centralized VLIW architectures and this can be attributed to a large number of explicit inter-cluster communications. Snooping based clustered VLIW architectures provide very limited but very fast way of inter-cluster communication by allowing some of the functional units to directly read some of the operands from the register file of some of the other clusters. In this paper, we propose instruction scheduling algorithms that exploit the limited snooping capability to reduce the register file energy consumption on an average by 12% and 18% and improve the overall performance by 5% and 11% for a 2-clustered and a 4-clustered machine respectively, over an earlier state-of-the-art clustered scheduling algorithm when evaluated in the context of snooping based clustered VLIW architectures.\",\"PeriodicalId\":261956,\"journal\":{\"name\":\"19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2007.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2007.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对寄存器文件的频繁访问使其成为ILP体系结构中能源消耗的主要来源之一。在VLIW体系结构中,大量的功能单元连接到一个大的统一寄存器文件,由于需要大量的端口,使得寄存器文件中的功耗更大。在一个相对较小的寄存器文件所占的面积上的高功耗导致了寄存器文件中的高功率密度,使其成为主要的热点之一。这使得它极易受到灾难性中暑的影响。这反过来又会影响性能和成本,因为需要定期冷却和复杂的封装和冷却技术。集群VLIW架构将寄存器文件在功能单元的集群之间进行分区,从而减少所需的端口数量,从而降低功耗。然而,我们观察到,与集中式VLIW体系结构相比,集群VLIW体系结构中对注册文件的总访问(以及相关的能耗)变得非常高,这可以归因于大量显式集群间通信。基于窥探的集群VLIW架构通过允许一些功能单元直接从其他集群的寄存器文件中读取一些操作数,提供了非常有限但非常快速的集群间通信方式。在本文中,我们提出了一种指令调度算法,该算法利用有限的窥探能力,在2集群和4集群的机器上,与早期的最先进的集群调度算法相比,分别将寄存器文件的能耗平均降低了12%和18%,并将总体性能分别提高了5%和11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Register File Energy Optimization for Snooping Based Clustered VLIW Architectures
Frequent accesses to the register file make it one of the major sources of energy consumption in ILP architectures. The large number of functional units connected to a large unified register file in VLIW architectures make power dissipation in the register file even worse because of the need for a large number of ports. High power dissipation in a relatively smaller area occupied by a register file leads to a high power density in the register file and makes it one of the prime hot-spots. This makes it highly susceptible to the possibility of a catastrophic heatstroke. This in turn impacts the performance and cost because of the need for periodic cool down and sophisticated packaging and cooling techniques respectively. Clustered VLIW architectures partition the register file among clusters of functional units and reduce the number of ports required thereby reducing the power dissipation. However, we observe that the aggregate accesses to register files in clustered VLIW architectures (and associated energy consumption) become very high compared to the centralized VLIW architectures and this can be attributed to a large number of explicit inter-cluster communications. Snooping based clustered VLIW architectures provide very limited but very fast way of inter-cluster communication by allowing some of the functional units to directly read some of the operands from the register file of some of the other clusters. In this paper, we propose instruction scheduling algorithms that exploit the limited snooping capability to reduce the register file energy consumption on an average by 12% and 18% and improve the overall performance by 5% and 11% for a 2-clustered and a 4-clustered machine respectively, over an earlier state-of-the-art clustered scheduling algorithm when evaluated in the context of snooping based clustered VLIW architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信