Y. Urabe, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda
{"title":"关于重叠Lempel-Ziv和Lyndon分解的大小","authors":"Y. Urabe, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda","doi":"10.4230/LIPIcs.CPM.2019.29","DOIUrl":null,"url":null,"abstract":"Lempel-Ziv (LZ) factorization and Lyndon factorization are well-known factorizations of strings. Recently, Karkkainen et al. studied the relation between the sizes of the two factorizations, and showed that the size of the Lyndon factorization is always smaller than twice the size of the non-overlapping LZ factorization [STACS 2017]. In this paper, we consider a similar problem for the overlapping version of the LZ factorization. Since the size of the overlapping LZ factorization is always smaller than the size of the non-overlapping LZ factorization and, in fact, can even be an O(log n) factor smaller, it is not immediately clear whether a similar bound as in previous work would hold. Nevertheless, in this paper, we prove that the size of the Lyndon factorization is always smaller than four times the size of the overlapping LZ factorization.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations\",\"authors\":\"Y. Urabe, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda\",\"doi\":\"10.4230/LIPIcs.CPM.2019.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lempel-Ziv (LZ) factorization and Lyndon factorization are well-known factorizations of strings. Recently, Karkkainen et al. studied the relation between the sizes of the two factorizations, and showed that the size of the Lyndon factorization is always smaller than twice the size of the non-overlapping LZ factorization [STACS 2017]. In this paper, we consider a similar problem for the overlapping version of the LZ factorization. Since the size of the overlapping LZ factorization is always smaller than the size of the non-overlapping LZ factorization and, in fact, can even be an O(log n) factor smaller, it is not immediately clear whether a similar bound as in previous work would hold. Nevertheless, in this paper, we prove that the size of the Lyndon factorization is always smaller than four times the size of the overlapping LZ factorization.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2019.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2019.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations
Lempel-Ziv (LZ) factorization and Lyndon factorization are well-known factorizations of strings. Recently, Karkkainen et al. studied the relation between the sizes of the two factorizations, and showed that the size of the Lyndon factorization is always smaller than twice the size of the non-overlapping LZ factorization [STACS 2017]. In this paper, we consider a similar problem for the overlapping version of the LZ factorization. Since the size of the overlapping LZ factorization is always smaller than the size of the non-overlapping LZ factorization and, in fact, can even be an O(log n) factor smaller, it is not immediately clear whether a similar bound as in previous work would hold. Nevertheless, in this paper, we prove that the size of the Lyndon factorization is always smaller than four times the size of the overlapping LZ factorization.