神经网络算法在某加油站的应用

A. Petrova
{"title":"神经网络算法在某加油站的应用","authors":"A. Petrova","doi":"10.1109/CTS53513.2021.9562791","DOIUrl":null,"url":null,"abstract":"The technological process of metering gas consumption is the main one at a gas metering station. The measurement results are used to form the value of the gas balance in the gas transmission system and affect its economic efficiency. Therefore, the automation of control of its parameters is an important task. The article discusses the possibility of applying machine learning methods, and in particular, artificial neural network algorithms, in an automated control system for the gas consumption metering process at a gas metering station.","PeriodicalId":371882,"journal":{"name":"2021 IV International Conference on Control in Technical Systems (CTS)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Neural Network Algorithms at a Gas Metering Station\",\"authors\":\"A. Petrova\",\"doi\":\"10.1109/CTS53513.2021.9562791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The technological process of metering gas consumption is the main one at a gas metering station. The measurement results are used to form the value of the gas balance in the gas transmission system and affect its economic efficiency. Therefore, the automation of control of its parameters is an important task. The article discusses the possibility of applying machine learning methods, and in particular, artificial neural network algorithms, in an automated control system for the gas consumption metering process at a gas metering station.\",\"PeriodicalId\":371882,\"journal\":{\"name\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS53513.2021.9562791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IV International Conference on Control in Technical Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS53513.2021.9562791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计量用气量是燃气计量站的主要工艺流程。测量结果用于形成输气系统的气平衡值,影响输气系统的经济效益。因此,对其参数的自动化控制是一项重要的任务。本文讨论了将机器学习方法,特别是人工神经网络算法应用于燃气计量站耗气量计量过程自动控制系统的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Neural Network Algorithms at a Gas Metering Station
The technological process of metering gas consumption is the main one at a gas metering station. The measurement results are used to form the value of the gas balance in the gas transmission system and affect its economic efficiency. Therefore, the automation of control of its parameters is an important task. The article discusses the possibility of applying machine learning methods, and in particular, artificial neural network algorithms, in an automated control system for the gas consumption metering process at a gas metering station.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信