动态优化问题的改进微分进化

Jiang Liqiang, Qiang Hongfu
{"title":"动态优化问题的改进微分进化","authors":"Jiang Liqiang, Qiang Hongfu","doi":"10.1109/ISDEA.2012.647","DOIUrl":null,"url":null,"abstract":"Modified differential evolution algorithm (MDE) is proposed for dynamic optimization problems. The new algorithm divides the population into two, a main subpopulation and an assistant one. The main subpopulation keeps invariant and searches locally. The assistant subpopulatioin is re-initialized at random and searches globally. The results show that MDE can track the changing extreme promptly and accurately and is capable of efficiently solving dynamic optmization problems.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Differential Evolution for Dynamic Optimization Problems\",\"authors\":\"Jiang Liqiang, Qiang Hongfu\",\"doi\":\"10.1109/ISDEA.2012.647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modified differential evolution algorithm (MDE) is proposed for dynamic optimization problems. The new algorithm divides the population into two, a main subpopulation and an assistant one. The main subpopulation keeps invariant and searches locally. The assistant subpopulatioin is re-initialized at random and searches globally. The results show that MDE can track the changing extreme promptly and accurately and is capable of efficiently solving dynamic optmization problems.\",\"PeriodicalId\":267532,\"journal\":{\"name\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"volume\":\"285 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDEA.2012.647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对动态优化问题,提出了改进差分进化算法(MDE)。新算法将种群划分为两个子集,一个主子集和一个辅助子集。主子种群保持不变并局部搜索。辅助子种群随机重新初始化,并进行全局搜索。结果表明,该方法能够快速准确地跟踪变化的极值,能够有效地求解动态优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Differential Evolution for Dynamic Optimization Problems
Modified differential evolution algorithm (MDE) is proposed for dynamic optimization problems. The new algorithm divides the population into two, a main subpopulation and an assistant one. The main subpopulation keeps invariant and searches locally. The assistant subpopulatioin is re-initialized at random and searches globally. The results show that MDE can track the changing extreme promptly and accurately and is capable of efficiently solving dynamic optmization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信