利用不确定性学习恢复大气湍流退化的图像

R. Yasarla, Vishal M. Patel
{"title":"利用不确定性学习恢复大气湍流退化的图像","authors":"R. Yasarla, Vishal M. Patel","doi":"10.1109/ICIP42928.2021.9506614","DOIUrl":null,"url":null,"abstract":"Atmospheric turbulence can significantly degrade the quality of images acquired by long-range imaging systems by causing spatially and temporally random fluctuations in the index of refraction of the atmosphere. Variations in the refractive index causes the captured images to be geometrically distorted and blurry. Hence, it is important to compensate for the visual degradation in images caused by atmospheric turbulence. In this paper, we propose a deep learning-based approach for restring a single image degraded by atmospheric turbulence. We make use of the epistemic uncertainty based on Monte Carlo dropouts to capture regions in the image where the network is having hard time restoring. The estimated uncertainty maps are then used to guide the network to obtain the restored image. Extensive experiments are conducted on synthetic and real images to show the significance of the proposed work.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"0104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Learning to Restore Images Degraded by Atmospheric Turbulence Using Uncertainty\",\"authors\":\"R. Yasarla, Vishal M. Patel\",\"doi\":\"10.1109/ICIP42928.2021.9506614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric turbulence can significantly degrade the quality of images acquired by long-range imaging systems by causing spatially and temporally random fluctuations in the index of refraction of the atmosphere. Variations in the refractive index causes the captured images to be geometrically distorted and blurry. Hence, it is important to compensate for the visual degradation in images caused by atmospheric turbulence. In this paper, we propose a deep learning-based approach for restring a single image degraded by atmospheric turbulence. We make use of the epistemic uncertainty based on Monte Carlo dropouts to capture regions in the image where the network is having hard time restoring. The estimated uncertainty maps are then used to guide the network to obtain the restored image. Extensive experiments are conducted on synthetic and real images to show the significance of the proposed work.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"0104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

大气湍流会引起大气折射率在空间和时间上的随机波动,从而显著降低远程成像系统获得的图像质量。折射率的变化导致捕获的图像在几何上扭曲和模糊。因此,对大气湍流引起的图像视觉退化进行补偿是很重要的。在本文中,我们提出了一种基于深度学习的方法来恢复被大气湍流退化的单幅图像。我们利用基于蒙特卡罗dropouts的认知不确定性来捕获图像中网络难以恢复的区域。然后使用估计的不确定性映射来引导网络获得恢复后的图像。在合成图像和真实图像上进行了大量的实验,以显示所提出工作的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Restore Images Degraded by Atmospheric Turbulence Using Uncertainty
Atmospheric turbulence can significantly degrade the quality of images acquired by long-range imaging systems by causing spatially and temporally random fluctuations in the index of refraction of the atmosphere. Variations in the refractive index causes the captured images to be geometrically distorted and blurry. Hence, it is important to compensate for the visual degradation in images caused by atmospheric turbulence. In this paper, we propose a deep learning-based approach for restring a single image degraded by atmospheric turbulence. We make use of the epistemic uncertainty based on Monte Carlo dropouts to capture regions in the image where the network is having hard time restoring. The estimated uncertainty maps are then used to guide the network to obtain the restored image. Extensive experiments are conducted on synthetic and real images to show the significance of the proposed work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信