在商用智能手表中使用运动传感器检测口罩佩戴状态

Shota Ono, Yuuki Nishiyama, K. Sezaki
{"title":"在商用智能手表中使用运动传感器检测口罩佩戴状态","authors":"Shota Ono, Yuuki Nishiyama, K. Sezaki","doi":"10.1109/HealthCom54947.2022.9982766","DOIUrl":null,"url":null,"abstract":"Wearing a mask considerably mitigates the risk of infection from droplets. Automatic detection of whether a person wears a mask in his/her daily life and the type of masks the person wears can provide useful information for various services such as infection risk assessment, just-in-time alerts, and lifelogging. However, such automatic detection is difficult without the use of video processing or specialized equipment. In this study, the motion sensor of a commercially available smartwatch was used to detect the mask-wearing status. An investigation of the acceleration characteristic and an evaluation experiment of the mask-wearing state detection model revealed an accuracy of approximately 90% when specific motions were classified using motion sensors and machine learning. Furthermore, 98% accuracy was achieved when classifying sitting and walking activities.","PeriodicalId":202664,"journal":{"name":"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting Face-Mask Wearing Status Using Motion Sensors in Commercially Available Smartwatches\",\"authors\":\"Shota Ono, Yuuki Nishiyama, K. Sezaki\",\"doi\":\"10.1109/HealthCom54947.2022.9982766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearing a mask considerably mitigates the risk of infection from droplets. Automatic detection of whether a person wears a mask in his/her daily life and the type of masks the person wears can provide useful information for various services such as infection risk assessment, just-in-time alerts, and lifelogging. However, such automatic detection is difficult without the use of video processing or specialized equipment. In this study, the motion sensor of a commercially available smartwatch was used to detect the mask-wearing status. An investigation of the acceleration characteristic and an evaluation experiment of the mask-wearing state detection model revealed an accuracy of approximately 90% when specific motions were classified using motion sensors and machine learning. Furthermore, 98% accuracy was achieved when classifying sitting and walking activities.\",\"PeriodicalId\":202664,\"journal\":{\"name\":\"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom54947.2022.9982766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom54947.2022.9982766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

戴口罩可大大降低被飞沫感染的风险。自动检测日常生活中是否佩戴口罩以及佩戴的口罩类型,可为感染风险评估、即时警报和生活记录等各种服务提供有用信息。然而,如果不使用视频处理或专门的设备,这种自动检测是困难的。在本研究中,我们使用市售智能手表的运动传感器来检测佩戴口罩的状态。对佩戴面具状态检测模型的加速度特性研究和评估实验表明,当使用运动传感器和机器学习对特定运动进行分类时,准确率约为90%。此外,在对坐着和行走活动进行分类时,准确率达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Face-Mask Wearing Status Using Motion Sensors in Commercially Available Smartwatches
Wearing a mask considerably mitigates the risk of infection from droplets. Automatic detection of whether a person wears a mask in his/her daily life and the type of masks the person wears can provide useful information for various services such as infection risk assessment, just-in-time alerts, and lifelogging. However, such automatic detection is difficult without the use of video processing or specialized equipment. In this study, the motion sensor of a commercially available smartwatch was used to detect the mask-wearing status. An investigation of the acceleration characteristic and an evaluation experiment of the mask-wearing state detection model revealed an accuracy of approximately 90% when specific motions were classified using motion sensors and machine learning. Furthermore, 98% accuracy was achieved when classifying sitting and walking activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信