基于反卷积自底向上深度网络的多人姿态估计

Meng Li, Haoqian Wang, Yongbing Zhang, Yi Yang
{"title":"基于反卷积自底向上深度网络的多人姿态估计","authors":"Meng Li, Haoqian Wang, Yongbing Zhang, Yi Yang","doi":"10.1109/IST48021.2019.9010189","DOIUrl":null,"url":null,"abstract":"Due to the trade off between model complexity and estimation accuracy, current human pose estimators either are of low accuracy or requires long running time. Such dilemma is especially severe in real time multi-person pose estimation. To address this issue, we design a deep network of reduced parameter size and high estimation accuracy, via introducing deconvolution layers instead of widely used fully-connected configuration. Specifically, our model consists of two successive parts: Detection network and matching network. The former outputs keypoint heatmap and person locations, and then the latter produces the final pose estimation using multiple deconvolutional layers. Benefiting from the simple structure and explicit utilization of previously neglected spatial structure in heatmap, the matching network is of specially high efficiency and at high precision. Experiments on the challenging COCO dataset demonstrate our method can almost cut off the running parameters of matching network, while achieving higher accuracy than existing methods.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deconvolutional Bottom-up Deep Network for multi-person pose estimation\",\"authors\":\"Meng Li, Haoqian Wang, Yongbing Zhang, Yi Yang\",\"doi\":\"10.1109/IST48021.2019.9010189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the trade off between model complexity and estimation accuracy, current human pose estimators either are of low accuracy or requires long running time. Such dilemma is especially severe in real time multi-person pose estimation. To address this issue, we design a deep network of reduced parameter size and high estimation accuracy, via introducing deconvolution layers instead of widely used fully-connected configuration. Specifically, our model consists of two successive parts: Detection network and matching network. The former outputs keypoint heatmap and person locations, and then the latter produces the final pose estimation using multiple deconvolutional layers. Benefiting from the simple structure and explicit utilization of previously neglected spatial structure in heatmap, the matching network is of specially high efficiency and at high precision. Experiments on the challenging COCO dataset demonstrate our method can almost cut off the running parameters of matching network, while achieving higher accuracy than existing methods.\",\"PeriodicalId\":117219,\"journal\":{\"name\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST48021.2019.9010189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于模型复杂性和估计精度之间的权衡,目前的人体姿态估计器要么精度低,要么需要较长的运行时间。这种困境在实时多人姿态估计中尤为严重。为了解决这个问题,我们通过引入反褶积层而不是广泛使用的全连接配置,设计了一个参数尺寸较小且估计精度高的深度网络。具体来说,我们的模型由两个连续的部分组成:检测网络和匹配网络。前者输出关键点热图和人物位置,后者使用多个反卷积层生成最终的姿态估计。该匹配网络结构简单,明确利用了热图中以往被忽略的空间结构,具有高效率和高精度的特点。在具有挑战性的COCO数据集上的实验表明,我们的方法几乎可以切断匹配网络的运行参数,同时取得了比现有方法更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deconvolutional Bottom-up Deep Network for multi-person pose estimation
Due to the trade off between model complexity and estimation accuracy, current human pose estimators either are of low accuracy or requires long running time. Such dilemma is especially severe in real time multi-person pose estimation. To address this issue, we design a deep network of reduced parameter size and high estimation accuracy, via introducing deconvolution layers instead of widely used fully-connected configuration. Specifically, our model consists of two successive parts: Detection network and matching network. The former outputs keypoint heatmap and person locations, and then the latter produces the final pose estimation using multiple deconvolutional layers. Benefiting from the simple structure and explicit utilization of previously neglected spatial structure in heatmap, the matching network is of specially high efficiency and at high precision. Experiments on the challenging COCO dataset demonstrate our method can almost cut off the running parameters of matching network, while achieving higher accuracy than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信