Paul Blockhaus, David Broneske, Martin Schäler, V. Köppen, G. Saake
{"title":"Combining Two Worlds: MonetDB with Multi-Dimensional Index Structure Support to Efficiently Query Scientific Data","authors":"Paul Blockhaus, David Broneske, Martin Schäler, V. Köppen, G. Saake","doi":"10.1145/3400903.3401691","DOIUrl":null,"url":null,"abstract":"Reproducibility and generalizability are important criteria for today’s data management society. Hence, stand-alone solutions that work well in isolation, but cannot convince at system level lead to a frustrating user experience. As a consequence, in our demo, we take the step of accelerating queries on scientific data by integrating the multi-dimensional index structure Elf into the main-memory-optimized database management system MonetDB. The overall intention is to show that the stand-alone speed ups of using Elf can also be observed when integrated into a holistic system storing scientific data sets. In our prototypical implementation, we demonstrate the performance of an Elf-backed MonetDB on the standard OLAP-benchmark, TPC-H, and the genomic multi-dimensional range query benchmark from the scientific data community. Queries can be run live on both benchmarks by the audience, while they are able to create different indexes to accelerate selection performance.","PeriodicalId":334018,"journal":{"name":"32nd International Conference on Scientific and Statistical Database Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400903.3401691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

再现性和概括性是当今数据管理社会的重要标准。因此,独立的解决方案在隔离状态下运行良好,但不能在系统级别上令人信服,这将导致令人沮丧的用户体验。因此,在我们的演示中,我们通过将多维索引结构Elf集成到主内存优化的数据库管理系统MonetDB中来加快对科学数据的查询。总体目的是表明,当集成到存储科学数据集的整体系统中时,也可以观察到使用Elf的单独加速。在我们的原型实现中,我们演示了elf支持的MonetDB在标准olap基准测试、TPC-H和来自科学数据社区的基因组多维范围查询基准测试上的性能。用户可以在两个基准上实时运行查询,同时可以创建不同的索引来加速选择性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Two Worlds: MonetDB with Multi-Dimensional Index Structure Support to Efficiently Query Scientific Data
Reproducibility and generalizability are important criteria for today’s data management society. Hence, stand-alone solutions that work well in isolation, but cannot convince at system level lead to a frustrating user experience. As a consequence, in our demo, we take the step of accelerating queries on scientific data by integrating the multi-dimensional index structure Elf into the main-memory-optimized database management system MonetDB. The overall intention is to show that the stand-alone speed ups of using Elf can also be observed when integrated into a holistic system storing scientific data sets. In our prototypical implementation, we demonstrate the performance of an Elf-backed MonetDB on the standard OLAP-benchmark, TPC-H, and the genomic multi-dimensional range query benchmark from the scientific data community. Queries can be run live on both benchmarks by the audience, while they are able to create different indexes to accelerate selection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信