交通数据流的近实时分析处理

Paulo Pintor, R. L. C. Costa, José Moreira
{"title":"交通数据流的近实时分析处理","authors":"Paulo Pintor, R. L. C. Costa, José Moreira","doi":"10.1145/3423457.3429365","DOIUrl":null,"url":null,"abstract":"Location data is vital for traffic management and for transportation and urban planning, but also benefits people in daily life, helping on decisions related to route planing and on the use of public transportation. Although historical data can provide insights on expected traffic volume at a certain region and time, predictions based solely on historical data fail to deal with events like street works and traffic-accidents. In this work, we use real time information together with historical data to predict traffic by road segment in the near future. The paper outlines the architecture of the system, the data model and the prediction method. Preliminary results using real world data on taxi positions show that using stochastic processes is a promising approach for short-term traffic forecasting.","PeriodicalId":129055,"journal":{"name":"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Near real time analytic processing of traffic data streams\",\"authors\":\"Paulo Pintor, R. L. C. Costa, José Moreira\",\"doi\":\"10.1145/3423457.3429365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location data is vital for traffic management and for transportation and urban planning, but also benefits people in daily life, helping on decisions related to route planing and on the use of public transportation. Although historical data can provide insights on expected traffic volume at a certain region and time, predictions based solely on historical data fail to deal with events like street works and traffic-accidents. In this work, we use real time information together with historical data to predict traffic by road segment in the near future. The paper outlines the architecture of the system, the data model and the prediction method. Preliminary results using real world data on taxi positions show that using stochastic processes is a promising approach for short-term traffic forecasting.\",\"PeriodicalId\":129055,\"journal\":{\"name\":\"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423457.3429365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423457.3429365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

位置数据对交通管理、交通和城市规划至关重要,也有利于人们的日常生活,有助于制定路线规划和使用公共交通工具的决策。虽然历史数据可以提供特定区域和时间的预期交通量,但仅基于历史数据的预测无法处理街道工程和交通事故等事件。在这项工作中,我们使用实时信息和历史数据来预测未来路段的交通。本文概述了系统的体系结构、数据模型和预测方法。使用出租车位置的真实世界数据的初步结果表明,使用随机过程是一种很有前途的短期交通预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near real time analytic processing of traffic data streams
Location data is vital for traffic management and for transportation and urban planning, but also benefits people in daily life, helping on decisions related to route planing and on the use of public transportation. Although historical data can provide insights on expected traffic volume at a certain region and time, predictions based solely on historical data fail to deal with events like street works and traffic-accidents. In this work, we use real time information together with historical data to predict traffic by road segment in the near future. The paper outlines the architecture of the system, the data model and the prediction method. Preliminary results using real world data on taxi positions show that using stochastic processes is a promising approach for short-term traffic forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信