基于深度学习的车辆安全通信资源编排

Mohammad Irfan Khan, François-Xavier Aubet, Marc-Oliver Pahl, Jérôme Härri
{"title":"基于深度学习的车辆安全通信资源编排","authors":"Mohammad Irfan Khan, François-Xavier Aubet, Marc-Oliver Pahl, Jérôme Härri","doi":"10.1109/WD.2019.8734252","DOIUrl":null,"url":null,"abstract":"IEEE 802.11p based V2X communication uses stochastic medium access control, which cannot prevent broadcast packet collision, in particular during high channel load. Wireless congestion control has been designed to keep the channel load at an optimal point. However, vehicles’ lack of precise and granular knowledge about true channel activity, in time and space, makes it impossible to fully avoid packet collisions. In this paper, we propose a machine learning approach using deep neural network for learning vehicles’ transmit patterns, and as such predicting future channel activity in space and time. We evaluate the performance of our proposal via simulation considering multiple safety-related V2X services involving heterogeneous transmit patterns. Our results show that predicting channel activity, and transmitting accordingly, reduces collisions and significantly improves communication performance.","PeriodicalId":432101,"journal":{"name":"2019 Wireless Days (WD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep Learning-aided Resource Orchestration for Vehicular Safety Communication\",\"authors\":\"Mohammad Irfan Khan, François-Xavier Aubet, Marc-Oliver Pahl, Jérôme Härri\",\"doi\":\"10.1109/WD.2019.8734252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IEEE 802.11p based V2X communication uses stochastic medium access control, which cannot prevent broadcast packet collision, in particular during high channel load. Wireless congestion control has been designed to keep the channel load at an optimal point. However, vehicles’ lack of precise and granular knowledge about true channel activity, in time and space, makes it impossible to fully avoid packet collisions. In this paper, we propose a machine learning approach using deep neural network for learning vehicles’ transmit patterns, and as such predicting future channel activity in space and time. We evaluate the performance of our proposal via simulation considering multiple safety-related V2X services involving heterogeneous transmit patterns. Our results show that predicting channel activity, and transmitting accordingly, reduces collisions and significantly improves communication performance.\",\"PeriodicalId\":432101,\"journal\":{\"name\":\"2019 Wireless Days (WD)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Wireless Days (WD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2019.8734252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Wireless Days (WD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2019.8734252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于IEEE 802.11p的V2X通信采用随机介质访问控制,无法防止广播包冲突,特别是在信道高负荷时。无线拥塞控制的目的是使信道负荷保持在最佳状态。然而,车辆在时间和空间上缺乏对真实通道活动的精确和细粒度的了解,这使得无法完全避免数据包碰撞。在本文中,我们提出了一种机器学习方法,使用深度神经网络来学习车辆的传输模式,从而在空间和时间上预测未来的通道活动。我们通过考虑涉及异构传输模式的多种安全相关V2X服务的仿真来评估我们的建议的性能。我们的研究结果表明,预测信道活动并相应地发送,可以减少冲突并显着提高通信性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-aided Resource Orchestration for Vehicular Safety Communication
IEEE 802.11p based V2X communication uses stochastic medium access control, which cannot prevent broadcast packet collision, in particular during high channel load. Wireless congestion control has been designed to keep the channel load at an optimal point. However, vehicles’ lack of precise and granular knowledge about true channel activity, in time and space, makes it impossible to fully avoid packet collisions. In this paper, we propose a machine learning approach using deep neural network for learning vehicles’ transmit patterns, and as such predicting future channel activity in space and time. We evaluate the performance of our proposal via simulation considering multiple safety-related V2X services involving heterogeneous transmit patterns. Our results show that predicting channel activity, and transmitting accordingly, reduces collisions and significantly improves communication performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信