N. Masmoudi, A. Ratcliffe, M. Wang, Y. Xie, T. Wang
{"title":"转换波反射全波形反演的实际实现","authors":"N. Masmoudi, A. Ratcliffe, M. Wang, Y. Xie, T. Wang","doi":"10.3997/2214-4609.202112751","DOIUrl":null,"url":null,"abstract":"Depth imaging of converted-wave (P-to-S) ocean-bottom seismic (OBS) data requires a depth model for both the P- and S-wave velocities. Building the S-wave velocity model is very challenging: conventional techniques include PP and PS image registration, or joint PP and PS tomography. These approaches are often impeded by the lack of a reliable PS image in the shallow part of the model due to the sparse-receiver acquisition of typical OBS surveys, and have limited resolution to deal with complex lateral velocity variations. We introduce a new full-waveform inversion technique to update the S-wave velocity using converted-wave reflection data recorded in the radial component of OBS surveys. Key aspects of the method include the use of acoustic Born-modeling, a robust objective function to handle kinematic and dynamic differences, and a layer-stripping strategy to simplify the non-linearity of the inversion problem. The proposed approach is validated on different synthetics, and demonstrated on a field data example, giving an improved S-wave velocity and better reflector continuity for PS imaging.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical implementation of converted-wave reflection full-waveform inversion\",\"authors\":\"N. Masmoudi, A. Ratcliffe, M. Wang, Y. Xie, T. Wang\",\"doi\":\"10.3997/2214-4609.202112751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth imaging of converted-wave (P-to-S) ocean-bottom seismic (OBS) data requires a depth model for both the P- and S-wave velocities. Building the S-wave velocity model is very challenging: conventional techniques include PP and PS image registration, or joint PP and PS tomography. These approaches are often impeded by the lack of a reliable PS image in the shallow part of the model due to the sparse-receiver acquisition of typical OBS surveys, and have limited resolution to deal with complex lateral velocity variations. We introduce a new full-waveform inversion technique to update the S-wave velocity using converted-wave reflection data recorded in the radial component of OBS surveys. Key aspects of the method include the use of acoustic Born-modeling, a robust objective function to handle kinematic and dynamic differences, and a layer-stripping strategy to simplify the non-linearity of the inversion problem. The proposed approach is validated on different synthetics, and demonstrated on a field data example, giving an improved S-wave velocity and better reflector continuity for PS imaging.\",\"PeriodicalId\":143998,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202112751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A practical implementation of converted-wave reflection full-waveform inversion
Depth imaging of converted-wave (P-to-S) ocean-bottom seismic (OBS) data requires a depth model for both the P- and S-wave velocities. Building the S-wave velocity model is very challenging: conventional techniques include PP and PS image registration, or joint PP and PS tomography. These approaches are often impeded by the lack of a reliable PS image in the shallow part of the model due to the sparse-receiver acquisition of typical OBS surveys, and have limited resolution to deal with complex lateral velocity variations. We introduce a new full-waveform inversion technique to update the S-wave velocity using converted-wave reflection data recorded in the radial component of OBS surveys. Key aspects of the method include the use of acoustic Born-modeling, a robust objective function to handle kinematic and dynamic differences, and a layer-stripping strategy to simplify the non-linearity of the inversion problem. The proposed approach is validated on different synthetics, and demonstrated on a field data example, giving an improved S-wave velocity and better reflector continuity for PS imaging.