同时丢番图近似问题的计算复杂度

J. Lagarias
{"title":"同时丢番图近似问题的计算复杂度","authors":"J. Lagarias","doi":"10.1137/0214016","DOIUrl":null,"url":null,"abstract":"Simultaneous Diophantine approximation in d dimensions deals with the approximation of a vector α = (α1, ..., αd) of d real numbers by vectors of rational numbers all having the same denominator. This paper considers the computational complexity of algorithms to find good simultaneous approximations to a given vector α of d rational numbers. We measure the goodness of an approximation using the sup norm. We show that a result of H. W. Lenstra, Jr. produces polynomial-time algorithms to find sup norm best approximations to a given vector α when the dimension d is fixed. We show that a recent algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz to find short vectors in an integral lattice can be used to find a good approximation to a given vector α in d dimensions with a denominator Q satisfying 1 ≤ Q ≤ 2d/2 N which is within a factor √5d 2d+1/2 of the best approximation with denominator Q* with 1 ≤ Q* ≤ N. This algorithm runs in time polynomial in the input size, independent of the dimension d. We prove results complementing these, showing certain natural simultaneous Diophantine approximation problems are NP-hard. We show that the problem of deciding whether a given vector α of rational numbers has a simultaneous approximation of specified accuracy with respect to the sup norm with denominator Q in a given interval 1 ≤ Q ≤ N is NP-complete. (Here the dimension d is allowed to vary.) We prove two other complexity results, which suggest that the problem of locating best (sup norm) simultaneous approximations is harder than this NP-complete problem.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"250","resultStr":"{\"title\":\"The computational complexity of simultaneous Diophantine approximation problems\",\"authors\":\"J. Lagarias\",\"doi\":\"10.1137/0214016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous Diophantine approximation in d dimensions deals with the approximation of a vector α = (α1, ..., αd) of d real numbers by vectors of rational numbers all having the same denominator. This paper considers the computational complexity of algorithms to find good simultaneous approximations to a given vector α of d rational numbers. We measure the goodness of an approximation using the sup norm. We show that a result of H. W. Lenstra, Jr. produces polynomial-time algorithms to find sup norm best approximations to a given vector α when the dimension d is fixed. We show that a recent algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz to find short vectors in an integral lattice can be used to find a good approximation to a given vector α in d dimensions with a denominator Q satisfying 1 ≤ Q ≤ 2d/2 N which is within a factor √5d 2d+1/2 of the best approximation with denominator Q* with 1 ≤ Q* ≤ N. This algorithm runs in time polynomial in the input size, independent of the dimension d. We prove results complementing these, showing certain natural simultaneous Diophantine approximation problems are NP-hard. We show that the problem of deciding whether a given vector α of rational numbers has a simultaneous approximation of specified accuracy with respect to the sup norm with denominator Q in a given interval 1 ≤ Q ≤ N is NP-complete. (Here the dimension d is allowed to vary.) We prove two other complexity results, which suggest that the problem of locating best (sup norm) simultaneous approximations is harder than this NP-complete problem.\",\"PeriodicalId\":127919,\"journal\":{\"name\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"250\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0214016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0214016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 250

摘要

d维的同时丢番图近似处理向量α = (α1,…(d)用有理数的向量表示d个实数,它们的分母相同。本文考虑了d有理数向量α的同时逼近算法的计算复杂度。我们用sup范数来衡量一个近似的优度。我们证明了H. W. Lenstra, Jr.的结果产生了多项式时间算法,以在维数d固定时找到给定向量α的sup范数最佳逼近。我们表明,最近的算法a . k . Lenstra h·w·Lenstra, Jr .)和l . Lovasz找到短向量积分格可以用来找到一个好的近似给定向量α与分母d维Q Q满足1≤≤2 d / 2 N等于√5 d 2 d + 1/2倍以内最好的近似与分母Q * 1≤Q *≤N这个算法的运行时间在多项式输入大小,独立的维d。我们证明结果补充这些,表明某些自然同时的丢番图近似问题是np困难的。我们证明了在给定区间1≤Q≤N内判定给定有序数向量α对分母为Q的sup范数是否具有指定精度的同时逼近的问题是np完全的。(这里的维度d是允许变化的。)我们证明了另外两个复杂性结果,这表明定位最佳(sup范数)同时逼近的问题比这个np完全问题更难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The computational complexity of simultaneous Diophantine approximation problems
Simultaneous Diophantine approximation in d dimensions deals with the approximation of a vector α = (α1, ..., αd) of d real numbers by vectors of rational numbers all having the same denominator. This paper considers the computational complexity of algorithms to find good simultaneous approximations to a given vector α of d rational numbers. We measure the goodness of an approximation using the sup norm. We show that a result of H. W. Lenstra, Jr. produces polynomial-time algorithms to find sup norm best approximations to a given vector α when the dimension d is fixed. We show that a recent algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz to find short vectors in an integral lattice can be used to find a good approximation to a given vector α in d dimensions with a denominator Q satisfying 1 ≤ Q ≤ 2d/2 N which is within a factor √5d 2d+1/2 of the best approximation with denominator Q* with 1 ≤ Q* ≤ N. This algorithm runs in time polynomial in the input size, independent of the dimension d. We prove results complementing these, showing certain natural simultaneous Diophantine approximation problems are NP-hard. We show that the problem of deciding whether a given vector α of rational numbers has a simultaneous approximation of specified accuracy with respect to the sup norm with denominator Q in a given interval 1 ≤ Q ≤ N is NP-complete. (Here the dimension d is allowed to vary.) We prove two other complexity results, which suggest that the problem of locating best (sup norm) simultaneous approximations is harder than this NP-complete problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信