数据中心中无状态调度器的集群负载估计

R. Alshahrani, H. Peyravi
{"title":"数据中心中无状态调度器的集群负载估计","authors":"R. Alshahrani, H. Peyravi","doi":"10.1109/NCA.2018.8548337","DOIUrl":null,"url":null,"abstract":"In probe-based distributed schedulers, little information is known about the state of the cluster. As a result, there is uncertainty about the underlying resource demand and usage. To efficiently leverage cloud datacenters' resources while maintaining the expected performance, one must address the question of how to achieve a good and accurate estimation of the cluster utilization in a stateless manner. We propose a scalable and efficient algorithm to estimate cluster load with a predetermined margin of error and confidence level. This algorithm can be used by cloud service providers to improve resource management systems and to estimate resource utilization. Due to its simplicity, the algorithm can be used in probe-based schedulers such as Sparrow, Tarcil, Piper, and Hawk.","PeriodicalId":268662,"journal":{"name":"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cluster Load Estimation for Stateless Schedulers in Datacenters\",\"authors\":\"R. Alshahrani, H. Peyravi\",\"doi\":\"10.1109/NCA.2018.8548337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In probe-based distributed schedulers, little information is known about the state of the cluster. As a result, there is uncertainty about the underlying resource demand and usage. To efficiently leverage cloud datacenters' resources while maintaining the expected performance, one must address the question of how to achieve a good and accurate estimation of the cluster utilization in a stateless manner. We propose a scalable and efficient algorithm to estimate cluster load with a predetermined margin of error and confidence level. This algorithm can be used by cloud service providers to improve resource management systems and to estimate resource utilization. Due to its simplicity, the algorithm can be used in probe-based schedulers such as Sparrow, Tarcil, Piper, and Hawk.\",\"PeriodicalId\":268662,\"journal\":{\"name\":\"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2018.8548337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2018.8548337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在基于探测的分布式调度器中,关于集群状态的信息很少。因此,潜在的资源需求和使用存在不确定性。为了有效地利用云数据中心的资源,同时保持预期的性能,必须解决如何以无状态的方式实现对集群利用率的良好而准确的估计的问题。我们提出了一种可扩展且高效的算法来估计具有预定误差范围和置信度的集群负载。该算法可被云服务提供商用于改进资源管理系统和估计资源利用率。由于其简单性,该算法可用于基于探针的调度器,如Sparrow、Tarcil、Piper和Hawk。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster Load Estimation for Stateless Schedulers in Datacenters
In probe-based distributed schedulers, little information is known about the state of the cluster. As a result, there is uncertainty about the underlying resource demand and usage. To efficiently leverage cloud datacenters' resources while maintaining the expected performance, one must address the question of how to achieve a good and accurate estimation of the cluster utilization in a stateless manner. We propose a scalable and efficient algorithm to estimate cluster load with a predetermined margin of error and confidence level. This algorithm can be used by cloud service providers to improve resource management systems and to estimate resource utilization. Due to its simplicity, the algorithm can be used in probe-based schedulers such as Sparrow, Tarcil, Piper, and Hawk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信