{"title":"基于贝叶斯线性混合模型的词熟悉率估计","authors":"Masayuki Asahara","doi":"10.18653/v1/D19-5902","DOIUrl":null,"url":null,"abstract":"This paper presents research on word familiarity rate estimation using the ‘Word List by Semantic Principles’. We collected rating information on 96,557 words in the ‘Word List by Semantic Principles’ via Yahoo! crowdsourcing. We asked 3,392 subject participants to use their introspection to rate the familiarity of words based on the five perspectives of ‘KNOW’, ‘WRITE’, ‘READ’, ‘SPEAK’, and ‘LISTEN’, and each word was rated by at least 16 subject participants. We used Bayesian linear mixed models to estimate the word familiarity rates. We also explored the ratings with the semantic labels used in the ‘Word List by Semantic Principles’.","PeriodicalId":129206,"journal":{"name":"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Word Familiarity Rate Estimation Using a Bayesian Linear Mixed Model\",\"authors\":\"Masayuki Asahara\",\"doi\":\"10.18653/v1/D19-5902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents research on word familiarity rate estimation using the ‘Word List by Semantic Principles’. We collected rating information on 96,557 words in the ‘Word List by Semantic Principles’ via Yahoo! crowdsourcing. We asked 3,392 subject participants to use their introspection to rate the familiarity of words based on the five perspectives of ‘KNOW’, ‘WRITE’, ‘READ’, ‘SPEAK’, and ‘LISTEN’, and each word was rated by at least 16 subject participants. We used Bayesian linear mixed models to estimate the word familiarity rates. We also explored the ratings with the semantic labels used in the ‘Word List by Semantic Principles’.\",\"PeriodicalId\":129206,\"journal\":{\"name\":\"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-5902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-5902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Word Familiarity Rate Estimation Using a Bayesian Linear Mixed Model
This paper presents research on word familiarity rate estimation using the ‘Word List by Semantic Principles’. We collected rating information on 96,557 words in the ‘Word List by Semantic Principles’ via Yahoo! crowdsourcing. We asked 3,392 subject participants to use their introspection to rate the familiarity of words based on the five perspectives of ‘KNOW’, ‘WRITE’, ‘READ’, ‘SPEAK’, and ‘LISTEN’, and each word was rated by at least 16 subject participants. We used Bayesian linear mixed models to estimate the word familiarity rates. We also explored the ratings with the semantic labels used in the ‘Word List by Semantic Principles’.