基于贝叶斯线性混合模型的词熟悉率估计

Masayuki Asahara
{"title":"基于贝叶斯线性混合模型的词熟悉率估计","authors":"Masayuki Asahara","doi":"10.18653/v1/D19-5902","DOIUrl":null,"url":null,"abstract":"This paper presents research on word familiarity rate estimation using the ‘Word List by Semantic Principles’. We collected rating information on 96,557 words in the ‘Word List by Semantic Principles’ via Yahoo! crowdsourcing. We asked 3,392 subject participants to use their introspection to rate the familiarity of words based on the five perspectives of ‘KNOW’, ‘WRITE’, ‘READ’, ‘SPEAK’, and ‘LISTEN’, and each word was rated by at least 16 subject participants. We used Bayesian linear mixed models to estimate the word familiarity rates. We also explored the ratings with the semantic labels used in the ‘Word List by Semantic Principles’.","PeriodicalId":129206,"journal":{"name":"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Word Familiarity Rate Estimation Using a Bayesian Linear Mixed Model\",\"authors\":\"Masayuki Asahara\",\"doi\":\"10.18653/v1/D19-5902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents research on word familiarity rate estimation using the ‘Word List by Semantic Principles’. We collected rating information on 96,557 words in the ‘Word List by Semantic Principles’ via Yahoo! crowdsourcing. We asked 3,392 subject participants to use their introspection to rate the familiarity of words based on the five perspectives of ‘KNOW’, ‘WRITE’, ‘READ’, ‘SPEAK’, and ‘LISTEN’, and each word was rated by at least 16 subject participants. We used Bayesian linear mixed models to estimate the word familiarity rates. We also explored the ratings with the semantic labels used in the ‘Word List by Semantic Principles’.\",\"PeriodicalId\":129206,\"journal\":{\"name\":\"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-5902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Aggregating and Analysing Crowdsourced Annotations for NLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-5902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了基于语义原则的词表词熟悉率估计方法。我们通过Yahoo!收集了96557个单词的评分信息。众包。我们要求3392名受试者根据“知道”、“写”、“读”、“说”和“听”五个方面对单词的熟悉程度进行自省,每个单词至少由16名受试者进行评分。我们使用贝叶斯线性混合模型来估计单词熟悉率。我们还探索了“基于语义原则的词表”中使用的语义标签的评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word Familiarity Rate Estimation Using a Bayesian Linear Mixed Model
This paper presents research on word familiarity rate estimation using the ‘Word List by Semantic Principles’. We collected rating information on 96,557 words in the ‘Word List by Semantic Principles’ via Yahoo! crowdsourcing. We asked 3,392 subject participants to use their introspection to rate the familiarity of words based on the five perspectives of ‘KNOW’, ‘WRITE’, ‘READ’, ‘SPEAK’, and ‘LISTEN’, and each word was rated by at least 16 subject participants. We used Bayesian linear mixed models to estimate the word familiarity rates. We also explored the ratings with the semantic labels used in the ‘Word List by Semantic Principles’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信