基于卷积神经网络特征学习的心脏骤停检测

M. Nguyen, Kim Kiseon
{"title":"基于卷积神经网络特征学习的心脏骤停检测","authors":"M. Nguyen, Kim Kiseon","doi":"10.1109/ICSGTEIS.2018.8709100","DOIUrl":null,"url":null,"abstract":"Arrhythmias including ventricular fibrillation and ventricular tachycardia, which are known as shockable rhythms, are the mainly cause of sudden cardiac arrests (SCA). In this paper, we propose a feature learning scheme applied for detection of SCA on electrocardiogram signal with the modified variational mode decomposition technique. The subsequent SAA consists of a convolutional neural network as a feature extractor (CNNE) and a support vector machine classifier. The features extracted by selected CNNE are then validated using 5-folds CV procedure on the evaluation data, and enable the accuracy of 99.02 %, sensitivity of 95.21 %, and specificity of 99.31 %.","PeriodicalId":438615,"journal":{"name":"2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feature Learning Using Convolutional Neural Network for Cardiac Arrest Detection\",\"authors\":\"M. Nguyen, Kim Kiseon\",\"doi\":\"10.1109/ICSGTEIS.2018.8709100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arrhythmias including ventricular fibrillation and ventricular tachycardia, which are known as shockable rhythms, are the mainly cause of sudden cardiac arrests (SCA). In this paper, we propose a feature learning scheme applied for detection of SCA on electrocardiogram signal with the modified variational mode decomposition technique. The subsequent SAA consists of a convolutional neural network as a feature extractor (CNNE) and a support vector machine classifier. The features extracted by selected CNNE are then validated using 5-folds CV procedure on the evaluation data, and enable the accuracy of 99.02 %, sensitivity of 95.21 %, and specificity of 99.31 %.\",\"PeriodicalId\":438615,\"journal\":{\"name\":\"2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGTEIS.2018.8709100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGTEIS.2018.8709100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

心律失常,包括心室颤动和室性心动过速,被称为震荡节律,是心脏骤停(SCA)的主要原因。本文提出了一种基于改进变分模态分解技术的特征学习方案,用于心电图信号的SCA检测。随后的SAA由卷积神经网络作为特征提取器(CNNE)和支持向量机分类器组成。选择CNNE提取的特征对评价数据进行5倍CV验证,准确率为99.02%,灵敏度为95.21%,特异性为99.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Learning Using Convolutional Neural Network for Cardiac Arrest Detection
Arrhythmias including ventricular fibrillation and ventricular tachycardia, which are known as shockable rhythms, are the mainly cause of sudden cardiac arrests (SCA). In this paper, we propose a feature learning scheme applied for detection of SCA on electrocardiogram signal with the modified variational mode decomposition technique. The subsequent SAA consists of a convolutional neural network as a feature extractor (CNNE) and a support vector machine classifier. The features extracted by selected CNNE are then validated using 5-folds CV procedure on the evaluation data, and enable the accuracy of 99.02 %, sensitivity of 95.21 %, and specificity of 99.31 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信