基于二维性能指标的改进模糊重复控制设计与优化方法

Manli Zhang, Min Wu, Shengnan Tian, Jinhua She
{"title":"基于二维性能指标的改进模糊重复控制设计与优化方法","authors":"Manli Zhang, Min Wu, Shengnan Tian, Jinhua She","doi":"10.1109/DDCLS52934.2021.9455512","DOIUrl":null,"url":null,"abstract":"This paper concerns the design and optimisation of two-dimensional (2D) repetitive control of nonlinear systems based on the Takagi-Sugeno (T-S) fuzzy model. First, a continuous-discrete 2D model of nonlinear repetitive-control systems based on T-S fuzzy model is constructed by utilizing the 2D characteristics of continuous control and discrete learning actions in the repetitive-control process. Next, a fuzzy Lyapunov-Krasovskii functional derives the linear-matrix-inequality-based stability condition with a low conservatism. Two positive and two nonzero parameters in the fuzzy Lyapunov-Krasovskii functional tune the control and learning actions. Then the particle swarm optimisation algorithm based on a 2D performance index searches for the best parameter combination, resulting in the optimal 2D controller gains. A numerical example is given to demonstrate the effectiveness of the method.","PeriodicalId":325897,"journal":{"name":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Fuzzy Repetitive-Control Design and Optimisation Method based on 2D Performance Index\",\"authors\":\"Manli Zhang, Min Wu, Shengnan Tian, Jinhua She\",\"doi\":\"10.1109/DDCLS52934.2021.9455512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the design and optimisation of two-dimensional (2D) repetitive control of nonlinear systems based on the Takagi-Sugeno (T-S) fuzzy model. First, a continuous-discrete 2D model of nonlinear repetitive-control systems based on T-S fuzzy model is constructed by utilizing the 2D characteristics of continuous control and discrete learning actions in the repetitive-control process. Next, a fuzzy Lyapunov-Krasovskii functional derives the linear-matrix-inequality-based stability condition with a low conservatism. Two positive and two nonzero parameters in the fuzzy Lyapunov-Krasovskii functional tune the control and learning actions. Then the particle swarm optimisation algorithm based on a 2D performance index searches for the best parameter combination, resulting in the optimal 2D controller gains. A numerical example is given to demonstrate the effectiveness of the method.\",\"PeriodicalId\":325897,\"journal\":{\"name\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS52934.2021.9455512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS52934.2021.9455512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于Takagi-Sugeno (T-S)模糊模型的非线性系统二维重复控制的设计与优化。首先,利用重复控制过程中连续控制的二维特性和学习动作的离散性,建立了基于T-S模糊模型的非线性重复控制系统连续离散二维模型;其次,利用模糊Lyapunov-Krasovskii泛函导出了低保守性的基于线性矩阵不等式的稳定性条件。模糊Lyapunov-Krasovskii泛函中的两个正参数和两个非零参数调节控制和学习动作。然后,基于二维性能指标的粒子群优化算法搜索最佳参数组合,得到最优的二维控制器增益。算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Fuzzy Repetitive-Control Design and Optimisation Method based on 2D Performance Index
This paper concerns the design and optimisation of two-dimensional (2D) repetitive control of nonlinear systems based on the Takagi-Sugeno (T-S) fuzzy model. First, a continuous-discrete 2D model of nonlinear repetitive-control systems based on T-S fuzzy model is constructed by utilizing the 2D characteristics of continuous control and discrete learning actions in the repetitive-control process. Next, a fuzzy Lyapunov-Krasovskii functional derives the linear-matrix-inequality-based stability condition with a low conservatism. Two positive and two nonzero parameters in the fuzzy Lyapunov-Krasovskii functional tune the control and learning actions. Then the particle swarm optimisation algorithm based on a 2D performance index searches for the best parameter combination, resulting in the optimal 2D controller gains. A numerical example is given to demonstrate the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信