Toeplitz的矩阵和它使用Salihu方法的决定论

Miftahul Jannah, Yusmet Rizal
{"title":"Toeplitz的矩阵和它使用Salihu方法的决定论","authors":"Miftahul Jannah, Yusmet Rizal","doi":"10.24036/unpjomath.v8i2.14240","DOIUrl":null,"url":null,"abstract":"The matrix is a rectangular array of numbers. In this range the numbers are called the entries of the matrix. In matrix calculations generally focus on square-shaped matrices. There is a matrix called the Toeplitz matrix. The Toeplitz matrix has the same operations and calculations as a square matrix in general, one method for calculating the determinant is the Sarrus method. There is an alternative method to solve the determinant of the matrix, namely the Salihu determinant. The purpose of this research is to know the determinant properties related to the Toeplitz matrix and to know the determinant of the n×n Toeplitz matrix with n≥3 using the Salihu method. The result of this study is that the completion of the Toeplitz matrix determinant calculation will produce the same value as the determinant calculation using the cofactor expansion method.","PeriodicalId":244588,"journal":{"name":"Journal of Mathematics UNP","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matriks Toeplitz dan Determinannya Menggunakan Metode Salihu\",\"authors\":\"Miftahul Jannah, Yusmet Rizal\",\"doi\":\"10.24036/unpjomath.v8i2.14240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matrix is a rectangular array of numbers. In this range the numbers are called the entries of the matrix. In matrix calculations generally focus on square-shaped matrices. There is a matrix called the Toeplitz matrix. The Toeplitz matrix has the same operations and calculations as a square matrix in general, one method for calculating the determinant is the Sarrus method. There is an alternative method to solve the determinant of the matrix, namely the Salihu determinant. The purpose of this research is to know the determinant properties related to the Toeplitz matrix and to know the determinant of the n×n Toeplitz matrix with n≥3 using the Salihu method. The result of this study is that the completion of the Toeplitz matrix determinant calculation will produce the same value as the determinant calculation using the cofactor expansion method.\",\"PeriodicalId\":244588,\"journal\":{\"name\":\"Journal of Mathematics UNP\",\"volume\":\"278 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics UNP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24036/unpjomath.v8i2.14240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics UNP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24036/unpjomath.v8i2.14240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵是一个矩形的数字数组。在这个范围内的数字被称为矩阵的元素。在矩阵计算中,一般关注方形矩阵。有一个矩阵叫做Toeplitz矩阵。一般来说,Toeplitz矩阵具有与方阵相同的操作和计算,计算行列式的一种方法是Sarrus方法。求解矩阵的行列式还有另一种方法,即Salihu行列式。本研究的目的是了解Toeplitz矩阵的行列式性质,并利用Salihu方法求出n≥3的n×n Toeplitz矩阵的行列式。本研究的结果是,Toeplitz矩阵行列式计算完成后产生的值与用协因式展开法进行行列式计算得到的值相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matriks Toeplitz dan Determinannya Menggunakan Metode Salihu
The matrix is a rectangular array of numbers. In this range the numbers are called the entries of the matrix. In matrix calculations generally focus on square-shaped matrices. There is a matrix called the Toeplitz matrix. The Toeplitz matrix has the same operations and calculations as a square matrix in general, one method for calculating the determinant is the Sarrus method. There is an alternative method to solve the determinant of the matrix, namely the Salihu determinant. The purpose of this research is to know the determinant properties related to the Toeplitz matrix and to know the determinant of the n×n Toeplitz matrix with n≥3 using the Salihu method. The result of this study is that the completion of the Toeplitz matrix determinant calculation will produce the same value as the determinant calculation using the cofactor expansion method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信