Heller相对$K_{0}$的投影束公式

V. Sadhu
{"title":"Heller相对$K_{0}$的投影束公式","authors":"V. Sadhu","doi":"10.2996/kmj/1605063630","DOIUrl":null,"url":null,"abstract":"In this article, we study the Heller relative $K_{0}$ group of the map $\\mathbb{P}_{X}^{r} \\to \\mathbb{P}_{S}^{r},$ where $X$ and $S$ are quasi-projective schemes over a commutative ring. More precisely, we prove that the projective bundle formula holds for Heller's relative $K_{0},$ provided $X$ is flat over $S.$ As a corollary, we get a description of the relative group $K_{0}(\\mathbb{P}_{X}^{r} \\to \\mathbb{P}_{S}^{r})$ in terms of generators and relations, provided $X$ is affine and flat over $S.$","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projective bundle formula for Heller's relative $K_{0}$\",\"authors\":\"V. Sadhu\",\"doi\":\"10.2996/kmj/1605063630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the Heller relative $K_{0}$ group of the map $\\\\mathbb{P}_{X}^{r} \\\\to \\\\mathbb{P}_{S}^{r},$ where $X$ and $S$ are quasi-projective schemes over a commutative ring. More precisely, we prove that the projective bundle formula holds for Heller's relative $K_{0},$ provided $X$ is flat over $S.$ As a corollary, we get a description of the relative group $K_{0}(\\\\mathbb{P}_{X}^{r} \\\\to \\\\mathbb{P}_{S}^{r})$ in terms of generators and relations, provided $X$ is affine and flat over $S.$\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/1605063630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/kmj/1605063630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了映射$\mathbb{P}_{X}^{r} \到$ mathbb{P}_{S}^{r}的Heller相对$K_{0}$群,其中$X$和$S$是交换环上的拟射影方案。更准确地说,我们证明了投影束公式适用于Heller的相对$K_{0},假设$X$平于$S。作为推论,我们得到了相对群$K_{0}(\mathbb{P}_{X}^{r} \到\mathbb{P}_{S}^{r})$在生成器和关系方面的描述,假设$X$是仿射的并且平坦于$S $
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective bundle formula for Heller's relative $K_{0}$
In this article, we study the Heller relative $K_{0}$ group of the map $\mathbb{P}_{X}^{r} \to \mathbb{P}_{S}^{r},$ where $X$ and $S$ are quasi-projective schemes over a commutative ring. More precisely, we prove that the projective bundle formula holds for Heller's relative $K_{0},$ provided $X$ is flat over $S.$ As a corollary, we get a description of the relative group $K_{0}(\mathbb{P}_{X}^{r} \to \mathbb{P}_{S}^{r})$ in terms of generators and relations, provided $X$ is affine and flat over $S.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信