{"title":"交通监控自动推理测量系统:利用计算智能增强无人机的态势感知","authors":"Prapa Rattadilok, Andrei V. Petrovski","doi":"10.1109/CICA.2014.7013256","DOIUrl":null,"url":null,"abstract":"An adaptive inferential measurement framework for control and automation systems has been proposed in the paper and tested on simulated traffic surveillance data. The use of the framework enables making inferences related to the presence of anomalies in the surveillance data with the help of statistical, computational and clustering analysis. Moreover, the performance of the ensemble of these tools can be dynamically tuned by a computational intelligence technique. The experimental results have demonstrated that the framework is generally applicable to various problem domains and reasonable performance is achieved in terms of inferential accuracy. Computational intelligence can also be effectively utilised for identifying the main contributing features in detecting anomalous data points within the surveillance data.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated inferential measurement system for traffic surveillance: Enhancing situation awareness of UAVs by computational intelligence\",\"authors\":\"Prapa Rattadilok, Andrei V. Petrovski\",\"doi\":\"10.1109/CICA.2014.7013256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive inferential measurement framework for control and automation systems has been proposed in the paper and tested on simulated traffic surveillance data. The use of the framework enables making inferences related to the presence of anomalies in the surveillance data with the help of statistical, computational and clustering analysis. Moreover, the performance of the ensemble of these tools can be dynamically tuned by a computational intelligence technique. The experimental results have demonstrated that the framework is generally applicable to various problem domains and reasonable performance is achieved in terms of inferential accuracy. Computational intelligence can also be effectively utilised for identifying the main contributing features in detecting anomalous data points within the surveillance data.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated inferential measurement system for traffic surveillance: Enhancing situation awareness of UAVs by computational intelligence
An adaptive inferential measurement framework for control and automation systems has been proposed in the paper and tested on simulated traffic surveillance data. The use of the framework enables making inferences related to the presence of anomalies in the surveillance data with the help of statistical, computational and clustering analysis. Moreover, the performance of the ensemble of these tools can be dynamically tuned by a computational intelligence technique. The experimental results have demonstrated that the framework is generally applicable to various problem domains and reasonable performance is achieved in terms of inferential accuracy. Computational intelligence can also be effectively utilised for identifying the main contributing features in detecting anomalous data points within the surveillance data.