一种新的2型模糊隶属函数在噪声数据预测中的应用

M. A. Khanesar, M. Teshnehlab, E. Kayacan, O. Kaynak
{"title":"一种新的2型模糊隶属函数在噪声数据预测中的应用","authors":"M. A. Khanesar, M. Teshnehlab, E. Kayacan, O. Kaynak","doi":"10.1109/CIMSA.2010.5611774","DOIUrl":null,"url":null,"abstract":"A novel, diamond-shaped type-2 fuzzy member- ship function is introduced in this study. The proposed type-2 fuzzy membership function has certain values on 0 and 1, but it has some uncertainties for the other membership values. It has been shown that the type-2 fuzzy system using this type of membership function introduced in this study has some noise reduction property in the presence of noisy inputs. The appropriate parameter selection to be able to achieve noise reduction property is also considered. A hybrid method consisting of particle swarm optimization (PSO) and gradient descent (GD) algorithm is used to optimize the parameters of the proposed type-2 fuzzy system. PSO is a derivative-free optimizer, and the possibility of the entrapment of this optimizer in local minimums is less than the gradient descent method. The proposed type-2 fuzzy system and the hybrid parameter estimation method are then tested on the prediction of a noisy, chaotic dynamical system. The simulation results show that the type-2 fuzzy predictor with the proposed novel membership functions shows a superior performance when compared to the other existing type-2 fuzzy systems in the presence of noisy inputs.","PeriodicalId":162890,"journal":{"name":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"A novel type-2 fuzzy membership function: application to the prediction of noisy data\",\"authors\":\"M. A. Khanesar, M. Teshnehlab, E. Kayacan, O. Kaynak\",\"doi\":\"10.1109/CIMSA.2010.5611774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel, diamond-shaped type-2 fuzzy member- ship function is introduced in this study. The proposed type-2 fuzzy membership function has certain values on 0 and 1, but it has some uncertainties for the other membership values. It has been shown that the type-2 fuzzy system using this type of membership function introduced in this study has some noise reduction property in the presence of noisy inputs. The appropriate parameter selection to be able to achieve noise reduction property is also considered. A hybrid method consisting of particle swarm optimization (PSO) and gradient descent (GD) algorithm is used to optimize the parameters of the proposed type-2 fuzzy system. PSO is a derivative-free optimizer, and the possibility of the entrapment of this optimizer in local minimums is less than the gradient descent method. The proposed type-2 fuzzy system and the hybrid parameter estimation method are then tested on the prediction of a noisy, chaotic dynamical system. The simulation results show that the type-2 fuzzy predictor with the proposed novel membership functions shows a superior performance when compared to the other existing type-2 fuzzy systems in the presence of noisy inputs.\",\"PeriodicalId\":162890,\"journal\":{\"name\":\"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2010.5611774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2010.5611774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文引入了一种新的菱形2型模糊隶属函数。所提出的二类模糊隶属度函数在0和1上有一定的值,但对其他隶属度值有一定的不确定性。研究结果表明,在存在噪声输入的情况下,使用本文引入的这种隶属函数的2型模糊系统具有一定的降噪性能。为达到降噪效果,还考虑了适当的参数选择。采用粒子群算法(PSO)和梯度下降算法(GD)的混合方法对所提出的2型模糊系统进行参数优化。粒子群优化算法是一种无导数优化算法,与梯度下降法相比,该算法陷入局部极小值的可能性更小。然后对所提出的2型模糊系统和混合参数估计方法进行了噪声混沌动力系统的预测试验。仿真结果表明,在存在噪声输入的情况下,与现有的2型模糊预测器相比,具有新隶属函数的2型模糊预测器具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel type-2 fuzzy membership function: application to the prediction of noisy data
A novel, diamond-shaped type-2 fuzzy member- ship function is introduced in this study. The proposed type-2 fuzzy membership function has certain values on 0 and 1, but it has some uncertainties for the other membership values. It has been shown that the type-2 fuzzy system using this type of membership function introduced in this study has some noise reduction property in the presence of noisy inputs. The appropriate parameter selection to be able to achieve noise reduction property is also considered. A hybrid method consisting of particle swarm optimization (PSO) and gradient descent (GD) algorithm is used to optimize the parameters of the proposed type-2 fuzzy system. PSO is a derivative-free optimizer, and the possibility of the entrapment of this optimizer in local minimums is less than the gradient descent method. The proposed type-2 fuzzy system and the hybrid parameter estimation method are then tested on the prediction of a noisy, chaotic dynamical system. The simulation results show that the type-2 fuzzy predictor with the proposed novel membership functions shows a superior performance when compared to the other existing type-2 fuzzy systems in the presence of noisy inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信