平面图上节点加权集奖斯坦纳树问题的逼近算法

J. Byrka, M. Lewandowski, Carsten Moldenhauer
{"title":"平面图上节点加权集奖斯坦纳树问题的逼近算法","authors":"J. Byrka, M. Lewandowski, Carsten Moldenhauer","doi":"10.4230/LIPIcs.SWAT.2016.2","DOIUrl":null,"url":null,"abstract":"We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88 + \\epsilon$)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation of Berman and Yaroslavtsev for the version without penalties. We also give a primal-dual 4-approximation algorithm for the more general forest version using techniques introduced by Hajiaghay and Jain.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximation algorithms for node-weighted prize-collecting Steiner tree problems on planar graphs\",\"authors\":\"J. Byrka, M. Lewandowski, Carsten Moldenhauer\",\"doi\":\"10.4230/LIPIcs.SWAT.2016.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88 + \\\\epsilon$)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation of Berman and Yaroslavtsev for the version without penalties. We also give a primal-dual 4-approximation algorithm for the more general forest version using techniques introduced by Hajiaghay and Jain.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2016.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2016.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了限制在平面图上的节点加权斯坦纳树问题(NWPCST)的奖励收集版本。给出了平面NWPCST的一种新的原对偶拉格朗日乘子保持(LMP) 3逼近算法。然后给出了一个($2.88 + \epsilon$)-近似,为平面NWPCST建立了一个新的最佳近似保证。这是通过将我们的LMP算法与阈值舍入技术相结合,并利用Berman和Yaroslavtsev的2.4近似来实现的。我们还使用Hajiaghay和Jain介绍的技术,给出了更一般的森林版本的原始对偶4逼近算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation algorithms for node-weighted prize-collecting Steiner tree problems on planar graphs
We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88 + \epsilon$)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation of Berman and Yaroslavtsev for the version without penalties. We also give a primal-dual 4-approximation algorithm for the more general forest version using techniques introduced by Hajiaghay and Jain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信