{"title":"一种检测海员不安全行为的新型深度学习框架","authors":"Haifeng Ding, Jinxian Weng, Bing Han","doi":"10.1080/19439962.2023.2169801","DOIUrl":null,"url":null,"abstract":"Abstract The accurate detection of seafarers’ unsafe behaviors is of great significance to improve the ship navigation safety. This study proposes an improved deep learning framework with a self-made dataset to detect the unsafe behavior of seafarers on duty. In order to increase the detection speed, the improved Cross Stage Partial connections (CSP) module is proposed to replace the original CSP module in the neck network of traditional algorithm. The efficient channel attention (ECA) module is also introduced to the backbone network of conventional algorithm as the attention mechanism network. In addition, the learning and representation capacities of the improved deep learning framework are promoted by redesigning the sizes of anchor boxes. The experiment results show that the proposed framework outperforms traditional object detection algorithms (e.g., YOLOv5s, R-CNN) in detecting seafarers’ unsafe behaviors because of the much higher detection speed and detection accuracy.","PeriodicalId":205624,"journal":{"name":"Journal of Transportation Safety & Security","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel deep learning framework for detecting seafarer’s unsafe behavior\",\"authors\":\"Haifeng Ding, Jinxian Weng, Bing Han\",\"doi\":\"10.1080/19439962.2023.2169801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The accurate detection of seafarers’ unsafe behaviors is of great significance to improve the ship navigation safety. This study proposes an improved deep learning framework with a self-made dataset to detect the unsafe behavior of seafarers on duty. In order to increase the detection speed, the improved Cross Stage Partial connections (CSP) module is proposed to replace the original CSP module in the neck network of traditional algorithm. The efficient channel attention (ECA) module is also introduced to the backbone network of conventional algorithm as the attention mechanism network. In addition, the learning and representation capacities of the improved deep learning framework are promoted by redesigning the sizes of anchor boxes. The experiment results show that the proposed framework outperforms traditional object detection algorithms (e.g., YOLOv5s, R-CNN) in detecting seafarers’ unsafe behaviors because of the much higher detection speed and detection accuracy.\",\"PeriodicalId\":205624,\"journal\":{\"name\":\"Journal of Transportation Safety & Security\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Safety & Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19439962.2023.2169801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19439962.2023.2169801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel deep learning framework for detecting seafarer’s unsafe behavior
Abstract The accurate detection of seafarers’ unsafe behaviors is of great significance to improve the ship navigation safety. This study proposes an improved deep learning framework with a self-made dataset to detect the unsafe behavior of seafarers on duty. In order to increase the detection speed, the improved Cross Stage Partial connections (CSP) module is proposed to replace the original CSP module in the neck network of traditional algorithm. The efficient channel attention (ECA) module is also introduced to the backbone network of conventional algorithm as the attention mechanism network. In addition, the learning and representation capacities of the improved deep learning framework are promoted by redesigning the sizes of anchor boxes. The experiment results show that the proposed framework outperforms traditional object detection algorithms (e.g., YOLOv5s, R-CNN) in detecting seafarers’ unsafe behaviors because of the much higher detection speed and detection accuracy.