一种用于100-145V准静态漏极调制粒子加速器的GaN/SiC超高频放大器

G. Formicone, J. Custer
{"title":"一种用于100-145V准静态漏极调制粒子加速器的GaN/SiC超高频放大器","authors":"G. Formicone, J. Custer","doi":"10.1109/EuMIC48047.2021.00036","DOIUrl":null,"url":null,"abstract":"This publication introduces a solid-state technology based on RF GaN/SiC High Electron Mobility Transistors (HEMT) operating at 100 VDC in CW mode, and up to 145 V in pulse mode. In pulse mode, it is an ideal solution for high efficiency using drain modulation as demonstrated in quasistatic mode characterization from 100 V to 145 V. Results based on a 50 mm single die RF transistor are reported here demonstrating 600 W CW at 100 V bias with 80% drain efficiency, and 1 kW at 145 V bias with a pulse width of 100 µs and 10% duty cycle, also with 80% efficiency. Quasi-static drain modulation achieves 3 dB peak power dynamic range with bias modulated from 100 V to 145 V, and 6 dB from 50 V to 145 V. The design employs harmonic tuning techniques for class E, F or F−1power amplifiers to achieve high efficiency and assembly techniques that overcome heat dissipation in such high-power density transistors. These devices and circuits have been designed to operate at 325 and 650 MHz in use at Fermi National Laboratory.","PeriodicalId":371692,"journal":{"name":"2020 15th European Microwave Integrated Circuits Conference (EuMIC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GaN/SiC UHF PA for Particle Accelerators with 100-145V Quasi-Static Drain Modulation\",\"authors\":\"G. Formicone, J. Custer\",\"doi\":\"10.1109/EuMIC48047.2021.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This publication introduces a solid-state technology based on RF GaN/SiC High Electron Mobility Transistors (HEMT) operating at 100 VDC in CW mode, and up to 145 V in pulse mode. In pulse mode, it is an ideal solution for high efficiency using drain modulation as demonstrated in quasistatic mode characterization from 100 V to 145 V. Results based on a 50 mm single die RF transistor are reported here demonstrating 600 W CW at 100 V bias with 80% drain efficiency, and 1 kW at 145 V bias with a pulse width of 100 µs and 10% duty cycle, also with 80% efficiency. Quasi-static drain modulation achieves 3 dB peak power dynamic range with bias modulated from 100 V to 145 V, and 6 dB from 50 V to 145 V. The design employs harmonic tuning techniques for class E, F or F−1power amplifiers to achieve high efficiency and assembly techniques that overcome heat dissipation in such high-power density transistors. These devices and circuits have been designed to operate at 325 and 650 MHz in use at Fermi National Laboratory.\",\"PeriodicalId\":371692,\"journal\":{\"name\":\"2020 15th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuMIC48047.2021.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuMIC48047.2021.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本出版物介绍了一种基于射频GaN/SiC高电子迁移率晶体管(HEMT)的固态技术,该技术在连续模式下工作在100 VDC,在脉冲模式下工作在145 V。在脉冲模式下,使用漏极调制是实现高效率的理想解决方案,在100 V至145 V的准静态模式表征中得到了证明。本文报告了基于50 mm单芯片射频晶体管的结果,在100 V偏置下显示600 W连续波,漏极效率为80%,在145 V偏置下显示1 kW,脉冲宽度为100µs,占空比为10%,效率也为80%。准静态漏极调制在100 V至145 V的偏置调制范围内可实现3db的峰值功率动态范围,在50 V至145 V的偏置调制范围内可实现6db的峰值功率动态范围。该设计采用了E、F或F−1类功率放大器的谐波调谐技术,以实现高效率,并采用了克服高功率密度晶体管散热问题的组装技术。这些设备和电路被设计在325和650兆赫的频率下工作,在费米国家实验室使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GaN/SiC UHF PA for Particle Accelerators with 100-145V Quasi-Static Drain Modulation
This publication introduces a solid-state technology based on RF GaN/SiC High Electron Mobility Transistors (HEMT) operating at 100 VDC in CW mode, and up to 145 V in pulse mode. In pulse mode, it is an ideal solution for high efficiency using drain modulation as demonstrated in quasistatic mode characterization from 100 V to 145 V. Results based on a 50 mm single die RF transistor are reported here demonstrating 600 W CW at 100 V bias with 80% drain efficiency, and 1 kW at 145 V bias with a pulse width of 100 µs and 10% duty cycle, also with 80% efficiency. Quasi-static drain modulation achieves 3 dB peak power dynamic range with bias modulated from 100 V to 145 V, and 6 dB from 50 V to 145 V. The design employs harmonic tuning techniques for class E, F or F−1power amplifiers to achieve high efficiency and assembly techniques that overcome heat dissipation in such high-power density transistors. These devices and circuits have been designed to operate at 325 and 650 MHz in use at Fermi National Laboratory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信