Bo Chang, Guodong Zhao, M. Imran, Liying Li, Zhi Chen
{"title":"触觉互联网实时无线控制的动态QoS分配","authors":"Bo Chang, Guodong Zhao, M. Imran, Liying Li, Zhi Chen","doi":"10.1109/5GWF.2018.8517078","DOIUrl":null,"url":null,"abstract":"Ultra-reliable and low-latency communication (URLLC) is critical to enable real-time wireless control in tactile internet (TACNET). However, it requires significant wireless resource consumption due to the extreme quality-of-service (QoS) requirement. In this paper, we propose a dynamic QoS allocation method from the perspective of communication-control co-design. In the proposed method, the QoS of URLLC is adjusted in a control process, where high QoS is given to critical control periods while low QoS is given to non-critical ones. As a result, the proposed method can significantly reduce the wireless energy consumption compared with conventional method that uses high QoS during the whole control process. Simulation results show the performance of our method.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic QoS Allocation for Real-Time Wireless Control in Tactile Internet\",\"authors\":\"Bo Chang, Guodong Zhao, M. Imran, Liying Li, Zhi Chen\",\"doi\":\"10.1109/5GWF.2018.8517078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-reliable and low-latency communication (URLLC) is critical to enable real-time wireless control in tactile internet (TACNET). However, it requires significant wireless resource consumption due to the extreme quality-of-service (QoS) requirement. In this paper, we propose a dynamic QoS allocation method from the perspective of communication-control co-design. In the proposed method, the QoS of URLLC is adjusted in a control process, where high QoS is given to critical control periods while low QoS is given to non-critical ones. As a result, the proposed method can significantly reduce the wireless energy consumption compared with conventional method that uses high QoS during the whole control process. Simulation results show the performance of our method.\",\"PeriodicalId\":440445,\"journal\":{\"name\":\"2018 IEEE 5G World Forum (5GWF)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5G World Forum (5GWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/5GWF.2018.8517078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8517078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic QoS Allocation for Real-Time Wireless Control in Tactile Internet
Ultra-reliable and low-latency communication (URLLC) is critical to enable real-time wireless control in tactile internet (TACNET). However, it requires significant wireless resource consumption due to the extreme quality-of-service (QoS) requirement. In this paper, we propose a dynamic QoS allocation method from the perspective of communication-control co-design. In the proposed method, the QoS of URLLC is adjusted in a control process, where high QoS is given to critical control periods while low QoS is given to non-critical ones. As a result, the proposed method can significantly reduce the wireless energy consumption compared with conventional method that uses high QoS during the whole control process. Simulation results show the performance of our method.