c度,h度和t度

W. Merkle, F. Stephan
{"title":"c度,h度和t度","authors":"W. Merkle, F. Stephan","doi":"10.1109/CCC.2007.17","DOIUrl":null,"url":null,"abstract":"Following a line of research that aims at relating the computation power and the initial segment complexity of a set, the work presented here investigates into the relations between Turing reducibility, defined in terms of computation power, and C-reducibility and H-reducibility, defined in terms of the complexity of initial segments. The global structures of all C-degrees and of all H-degrees are rich and allows to embed the lattice of the powerset of the natural numbers under inclusion. In particular, there are C-degrees, as well as H-degrees, that are different from the least degree and are the meet of two other degrees, whereas on the other hand there are pairs of sets that have a meet neither in the C-degrees nor in the H-degrees; these results answer questions in a survey by Nies and Miller. There are r.e. sets that form a minimal pair for C-reducibility and Sigma2 0 sets that form a minimal pair for H-reducibility, which answers questions by Downey and Hirschfeldt. Furthermore, the following facts on the relation between C-degrees, H-degrees and Turing degrees hold. Every C-degree contains at most one Turing degree and this bound is sharp since there are C-degrees that do contain a Turing degree. For the comprising class of complex sets, neither the C-degree nor the H-degree of such a set can contain a Turing degree, in fact, the Turing degree of any complex set contains infinitely many C-degrees. Similarly the Turing degree of any set that computes the halting problem contains infinitely many H-degrees, while the H-degree of any 2-random set R is never contained in the Turing degree of R. By the latter, H-equivalence of Martin-Lof random sets does not imply their Turing equivalence. The structure of the Cdegrees contained in the Turing degree of a complex sets is rich and allows to embed any countable distributive lattice; a corresponding statement is true for the structure of H-degrees that are contained in the Turing degree of a set that computes the halting problem.","PeriodicalId":175854,"journal":{"name":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","volume":"370 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On C-Degrees, H-Degrees and T-Degrees\",\"authors\":\"W. Merkle, F. Stephan\",\"doi\":\"10.1109/CCC.2007.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following a line of research that aims at relating the computation power and the initial segment complexity of a set, the work presented here investigates into the relations between Turing reducibility, defined in terms of computation power, and C-reducibility and H-reducibility, defined in terms of the complexity of initial segments. The global structures of all C-degrees and of all H-degrees are rich and allows to embed the lattice of the powerset of the natural numbers under inclusion. In particular, there are C-degrees, as well as H-degrees, that are different from the least degree and are the meet of two other degrees, whereas on the other hand there are pairs of sets that have a meet neither in the C-degrees nor in the H-degrees; these results answer questions in a survey by Nies and Miller. There are r.e. sets that form a minimal pair for C-reducibility and Sigma2 0 sets that form a minimal pair for H-reducibility, which answers questions by Downey and Hirschfeldt. Furthermore, the following facts on the relation between C-degrees, H-degrees and Turing degrees hold. Every C-degree contains at most one Turing degree and this bound is sharp since there are C-degrees that do contain a Turing degree. For the comprising class of complex sets, neither the C-degree nor the H-degree of such a set can contain a Turing degree, in fact, the Turing degree of any complex set contains infinitely many C-degrees. Similarly the Turing degree of any set that computes the halting problem contains infinitely many H-degrees, while the H-degree of any 2-random set R is never contained in the Turing degree of R. By the latter, H-equivalence of Martin-Lof random sets does not imply their Turing equivalence. The structure of the Cdegrees contained in the Turing degree of a complex sets is rich and allows to embed any countable distributive lattice; a corresponding statement is true for the structure of H-degrees that are contained in the Turing degree of a set that computes the halting problem.\",\"PeriodicalId\":175854,\"journal\":{\"name\":\"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)\",\"volume\":\"370 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2007.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2007.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在一系列旨在将计算能力与集合的初始段复杂性联系起来的研究之后,本文提出的工作研究了图灵可约性(根据计算能力定义)与c -可约性和h -可约性(根据初始段的复杂性定义)之间的关系。所有c度和所有h度的全局结构都是丰富的,并且允许嵌入包含下自然数幂集的格。特别地,有c度,也有h度,它们不同于最小度,是另外两个度的交汇点,而另一方面,有一对集合既没有c度,也没有h度;这些结果回答了尼斯和米勒调查中的问题。有r - e集合构成c -可约性的最小对sigma20集合构成h -可约性的最小对,这回答了唐尼和赫斯菲尔德的问题。进一步,关于c度、h度和图灵度之间的关系,下列事实是成立的。每个c度最多包含一个图灵度,这个界是尖锐的,因为有些c度确实包含一个图灵度。对于复集的组成类,其c度和h度都不能包含一个图灵度,事实上,任何复集的图灵度都包含无限多个c度。同样,计算停机问题的任意集的图灵度包含无限多个h度,而任意2-随机集R的h度从不包含在R的图灵度中。由于后者,Martin-Lof随机集的h等价并不意味着它们的图灵等价。复集的图灵度所包含的c度结构是丰富的,允许嵌入任何可数分配格;对于计算停止问题的集合的图灵度中包含的h度结构,一个相应的陈述是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On C-Degrees, H-Degrees and T-Degrees
Following a line of research that aims at relating the computation power and the initial segment complexity of a set, the work presented here investigates into the relations between Turing reducibility, defined in terms of computation power, and C-reducibility and H-reducibility, defined in terms of the complexity of initial segments. The global structures of all C-degrees and of all H-degrees are rich and allows to embed the lattice of the powerset of the natural numbers under inclusion. In particular, there are C-degrees, as well as H-degrees, that are different from the least degree and are the meet of two other degrees, whereas on the other hand there are pairs of sets that have a meet neither in the C-degrees nor in the H-degrees; these results answer questions in a survey by Nies and Miller. There are r.e. sets that form a minimal pair for C-reducibility and Sigma2 0 sets that form a minimal pair for H-reducibility, which answers questions by Downey and Hirschfeldt. Furthermore, the following facts on the relation between C-degrees, H-degrees and Turing degrees hold. Every C-degree contains at most one Turing degree and this bound is sharp since there are C-degrees that do contain a Turing degree. For the comprising class of complex sets, neither the C-degree nor the H-degree of such a set can contain a Turing degree, in fact, the Turing degree of any complex set contains infinitely many C-degrees. Similarly the Turing degree of any set that computes the halting problem contains infinitely many H-degrees, while the H-degree of any 2-random set R is never contained in the Turing degree of R. By the latter, H-equivalence of Martin-Lof random sets does not imply their Turing equivalence. The structure of the Cdegrees contained in the Turing degree of a complex sets is rich and allows to embed any countable distributive lattice; a corresponding statement is true for the structure of H-degrees that are contained in the Turing degree of a set that computes the halting problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信